
Bitcoin	Stamps	Protocol:	A	Technical	Whitepaper

Abstract

Bitcoin	Stamps	is	a	metaprotocol	for	creating	permanent,	immutable	digital	assets	on	Bitcoin	through	direct	

UTXO	storage.	Unlike	witness-data	approaches,	Bitcoin	Stamps	embed	asset	data	in	transaction	outputs	using	

bare	multisig	and	P2WSH	encoding,	ensuring	universal	node	storage	and	consensus-critical	permanence.

The	protocol	evolved	from	Counterparty	foundations	(block	779,652)	through	native	Bitcoin	encoding	(block	

793,068)	to	P2WSH	optimization	via	OLGA	(block	865,000).	Built	on	account-based	asset	tracking,	Bitcoin	

Stamps	support	fungible	tokens	(SRC-20),	non-fungible	assets	(base	stamps),	decentralized	naming	(SRC-101),	

and	composable	recursion	(SRC-721).

Core	Innovation:	Leveraging	Bitcoin's	UTXO	set	for	permanent	data	storage,	making	asset	data	consensus-

critical	and	unprunable.	All	full	nodes	must	store	stamp	data	to	validate	transactions,	guaranteeing	permanence	

as	long	as	Bitcoin	exists.

Key	Properties:

-	UTXO-based	permanence:	Data	stored	in	spendable	outputs,	not	witness	segments

-	Consensus-critical	storage:	Required	for	transaction	validation	across	all	nodes

-	Account-based	assets:	Counterparty-style	balance	tracking,	not	UTXO-bound	tokens

-	Multi-protocol	support:	Extensible	architecture	for	tokens,	names,	and	recursion

-	Cost-optimized	encoding:	OLGA	P2WSH	reduces	fees	30-95%	vs	bare	multisig

Architecture:	The	protocol	separates	data	encoding	(UTXO	layer)	from	asset	tracking	(account	layer).	Stamps	

create	permanent	records	in	Bitcoin's	UTXO	set	while	maintaining	balances	through	Counterparty-proven	

account	ledger.	This	hybrid	approach	combines	Bitcoin's	permanence	with	practical	asset	management.

Table	of	Contents

1.	[Introduction](./introduction.md)	—	Protocol	motivation,	history,	evolution

2.	[Protocol	Architecture](./architecture.md)	—	UTXO	storage,	encoding	layers,	data	encoding	methods	(bare	

multisig,	P2WSH/OLGA)

3.	[Token	Standards](./token-standards.md)	—	SRC-20	tokens,	SRC-721	recursion,	SRC-101	names

4.	[Economic	Model](./economics.md)	—	Fee	structures,	miner	incentives,	sustainability

5.	[Stamps	Improvement	Proposals](./improvement-proposals.md)	—	SIP	governance,	active	proposals,	

roadmap

6.	[Implementation](./implementation.md)	—	Indexer	architecture,	consensus	model,	validation	logic

7.	[Security	Analysis](./security.md)	—	Permanence	guarantees,	attack	vectors,	mitigations

8.	[Future	Work](./future.md)	—	Research	directions,	SIP	roadmap	summary

Document	Structure

This	whitepaper	consists	of	multiple	sections:

-	[introduction.md](./introduction.md)	—	Protocol	history	from	Counterparty	origins	(block	779,652)	through	

native	encoding	(793,068)	to	OLGA	optimization	(833,000/865,000)

-	[architecture.md](./architecture.md)	—	Technical	architecture:	UTXO	storage	model,	bare	multisig	and	

P2WSH/OLGA	encoding,	account-based	asset	tracking

-	[token-standards.md](./token-standards.md)	—	SRC-20,	SRC-721,	SRC-721r,	SRC-101	specifications

-	[economics.md](./economics.md)	—	UTXO	permanence	economics,	storage	costs,	fee	analysis

-	[improvement-proposals.md](./improvement-proposals.md)	—	SIP	governance	framework	and	active	

proposals	(SIP-0001	through	SIP-0008)

-	[implementation.md](./implementation.md)	—	Indexer	architecture,	consensus	mechanisms,	validation	logic

-	[security.md](./security.md)	—	Threat	model,	attack	vectors,	immutability	guarantees

-	[future.md](./future.md)	—	Research	directions	and	SIP	roadmap	summary

Quick	Reference

Genesis	Block:	779,652	(March	29,	2023)	—	First	Bitcoin	Stamp	by	Mikeinspace

Native	Encoding:	793,068	(April	20,	2023)	—	Direct	Bitcoin	encoding	begins

Counterparty	Cutoff:	796,000	(August	15,	2023)	—	SRC-20	consensus	rule

OLGA	Activation:	865,000	(October	15,	2023)	—	P2WSH	optimization	available

Foundation:	Built	on	Counterparty	protocol	(est.	2014)	for	proven	account-based	asset	tracking

Storage	Model:	UTXO-based	(consensus-critical,	unprunable)

Asset	Model:	Account-based	(balances	tracked	per	address,	not	per	UTXO)

This	whitepaper	serves	as	the	canonical	technical	specification	for	Bitcoin	Stamps	protocol.	All	implementations	

should	reference	this	document	for	protocol	compliance.

1.	Introduction

1.1	Motivation

Bitcoin's	primary	innovation	is	permanent,	censorship-resistant	value	storage	backed	by	proof-of-work	

consensus.	While	Bitcoin	enables	programmable	transactions	through	Script,	the	network	primarily	serves	as	

monetary	infrastructure.	Bitcoin	Stamps	extends	this	permanence	to	arbitrary	data—images,	tokens,	names—

by	embedding	information	directly	in	Bitcoin's	UTXO	set.

Core	Problem:	Digital	assets	require	permanent	storage	to	retain	value.	Traditional	NFT	platforms	rely	on	IPFS,	

Arweave,	or	centralized	servers—all	subject	to	failure	modes	outside	asset	holders'	control.	Even	Bitcoin-based	

solutions	using	witness	data	lack	permanence	guarantees	since	nodes	can	prune	witness	segments	after	

validation.

Solution:	Store	asset	data	in	transaction	outputs	(UTXOs)	rather	than	witness	data	or	external	systems.	

Bitcoin's	consensus	rules	require	all	full	nodes	to	maintain	the	UTXO	set	for	transaction	validation,	making	

UTXO-embedded	data:

-	Consensus-critical:	Required	for	network	operation

-	Unprunable:	Cannot	be	removed	without	breaking	validation

-	Universal:	Stored	by	every	full	node	globally

-	Permanent:	Survives	as	long	as	Bitcoin	exists

Design	Philosophy:	Embrace	Bitcoin's	constraints	rather	than	fight	them.	Higher	fees	for	UTXO	storage	reflect	

true	economic	cost	of	permanent	Bitcoin	storage.	Protocol	design	prioritizes	permanence	over	convenience,	

aligning	with	Bitcoin's	long-term	value	proposition.

1.2	Historical	Context

1.2.1	Counterparty	Foundation	(2014-2023)

Bitcoin	Stamps	builds	on	Counterparty	protocol,	established	January	2014	as	Bitcoin's	first	metaprotocol	for	

asset	creation.	Counterparty	introduced:

-	Account-based	assets:	Balance	ledger	tracked	per	address,	not	per	UTXO

-	OP_RETURN	encoding:	Embed	metadata	in	80-byte	provably	unspendable	outputs

-	Decentralized	exchange:	On-chain	order	books	and	atomic	swaps

-	10+	years	production:	Battle-tested	architecture	handling	millions	of	transactions

Counterparty	proved	account-based	asset	tracking	works	at	scale	on	Bitcoin.	Rather	than	track	which	UTXOs	

contain	tokens	(complex,	privacy-leaking),	maintain	address-level	balances	(simple,	efficient,	private).

Critical	insight:	SRC-20	tokens	inherit	Counterparty's	account	model.	Token	ownership	is	tracked	per	address	in	

indexer	state,	NOT	embedded	in	specific	UTXOs.	This	is	foundational	to	Bitcoin	Stamps	architecture.

1.2.2	Genesis:	Block	779,652	(March	29,	2023)

Mikeinspace	created	the	first	Bitcoin	Stamp—a	laser-eyes	pixel	art	embedded	via	Counterparty	transaction.	This	

stamp	used	traditional	OP_RETURN	encoding	but	sparked	recognition:	Bitcoin	could	permanently	store	visual	

art,	not	just	monetary	metadata.

Innovation:	Frame	digital	art	as	permanent	Bitcoin	artifacts	rather	than	ephemeral	files.	If	art	data	lives	in	

Bitcoin's	UTXO	set,	it	inherits	Bitcoin's	permanence	and	censorship	resistance.

Community	formation:	The	Original	Trinity	(Mikeinspace,	Arwyn,	Reinamora)	recognized	potential	for	

permanent	digital	culture	on	Bitcoin.	Within	days,	Stampchain.io	launched	as	reference	indexer	and	minting	

interface,	establishing	infrastructure	for	ecosystem	growth.

1.2.3	Cultural	Milestone:	KEVIN	(Blocks	783,718	&	788,041)

Block	783,718	(March	15,	2023):	Arwyn	created	KEVIN	(Stamp	#4258)	as	homage	to	Rare	Pepe	culture.	The	

artwork	unexpectedly	exhibited	"ghost-like"	behavior—appearing	in	unexpected	system	locations,	inspiring	

organic	derivative	works.	KEVIN	evolved	from	artistic	experiment	to	community	symbol.

Block	788,041	(April	20,	2023):	Arwyn	deployed	KEVIN	as	first	SRC-20	token	(Stamp	#18,516),	formalizing	

fungible	token	standard	atop	Bitcoin	Stamps.	This	dual	nature	(unique	stamp	#4258	+	fungible	token)	

established	pattern:	stamps	provide	non-fungible	foundation,	SRC-20	adds	fungible	layer.

Cultural	impact:	KEVIN	demonstrated	fair	launch	principles—no	pre-mine,	equal	minting	access,	community-

driven	distribution.	These	values	became	protocol	philosophy:	"we	are	all	Kevin"	(echoing	Mayan	"In	Lak'ech	Ala	

K'in"—"I	am	you,	you	are	me").	Over	2,300	holders	grew	organically	without	marketing	or	speculation.

1.2.4	Technical	Evolution:	Block	793,068	(April	20,	2023)

First	stamp	using	native	Bitcoin	bare	multisig	encoding	rather	than	Counterparty	OP_RETURN.	This	transition	

marked	protocol	independence—stamps	no	longer	required	Counterparty	infrastructure,	only	Bitcoin	itself.

Bare	multisig	encoding:

`
OP_1	<pubkey1>	<pubkey2>	<pubkey3>	OP_3	OP_CHECKMULTISIG

`
Each	"pubkey"	is	32	bytes	of	image/data.	A	2-of-3	multisig	provides	64	bytes	usable	data	per	output.	Multiple	

outputs	chain	together	for	larger	assets.

Advantages:

-	Direct	Bitcoin	encoding	without	metaprotocol	dependencies

-	UTXO-based	storage	(consensus-critical,	unprunable)

-	No	witness	data—data	is	part	of	transaction	validation	itself

-	Simplified	indexer	logic	(scan	multisig	outputs,	decode	data)

Tradeoffs:	Higher	fees	(4x	witness	discount	lost)	but	guaranteed	permanence.	Design	choice:	pay	for	true	

permanence	rather	than	optimize	for	cost.

1.2.5	Asset	Standards:	Blocks	788,041	-	796,000

SRC-20	fungible	tokens	(block	788,041):	JSON	metadata	in	stamp	encoding	defines	DEPLOY,	MINT,	TRANSFER	

operations.	Indexers	maintain	account	balances	per	Counterparty	model—ownership	tracked	by	address,	not	

UTXO.

SRC-721	recursion	(block	792,370):	Stamps	can	reference	other	stamps	by	ID,	enabling	composable	artwork.	A	

stamp	might	combine	background	#1234	+	character	#5678	+	effects	#9012,	creating	infinite	combinations	

from	finite	on-chain	components.

Counterparty	cutoff	(block	796,000):	Community	consensus	rule—SRC-20	tokens	on	Counterparty	only	valid	

until	block	796,000.	After	this,	only	Bitcoin-native	encoded	tokens	recognized.	Ensures	protocol	independence	

while	honoring	early	adopters.

1.2.6	Optimization:	OLGA	at	Block	865,000	(October	15,	2023)

Reinamora	introduced	OLGA	(Octet	Linked	Graphical	Artifacts)—P2WSH	encoding	replacing	bare	multisig	for	

30-95%	cost	reduction.

P2WSH	structure:

`
OP_0	<32-byte-hash-of-witness-script>

`
Witness	script	contains	data,	hashed	and	stored	in	output.	More	efficient	than	bare	multisig	pubkeys	in	output	

scripts.

Key	insight:	P2WSH	witness	scripts	are	still	consensus-critical	(unlike	witness	data	for	signatures).	Scripts	must	

be	provided	to	spend	P2WSH	outputs,	so	nodes	must	store	them	for	UTXO	validation.	Data	remains	unprunable	

and	permanent.

Cost	reduction	mechanism:

-	Bare	multisig:	3	fake	pubkeys	(96	bytes)	per	output	in	transaction	data

-	P2WSH:	32-byte	hash	per	output,	actual	data	in	witness	script

-	Witness	discount:	4:1	reduction	(witness	data	counted	at	1/4	weight)

-	Result:	60-80%	fee	reduction	for	typical	stamps

OLGA	benefits:

-	Maintains	UTXO	permanence	(witness	scripts	are	consensus-critical)

-	Dramatically	reduces	creation	costs	(broader	accessibility)

-	Better	miner	priority	(more	efficient	byte	usage)

-	Universal	compatibility	(works	across	all	stamp	protocols)

1.3	Protocol	Overview

Bitcoin	Stamps	protocol	comprises:

1.	Data	encoding	layer:	Bare	multisig	(pre-865,000)	or	P2WSH/OLGA	(post-865,000)	for	embedding	data	in	

UTXOs

2.	Asset	tracking	layer:	Account-based	ledger	(Counterparty-style)	for	ownership	and	balances

3.	Standards	layer:	SRC-20	(tokens),	SRC-721	(recursion),	SRC-101	(names)	defining	asset	semantics

4.	Indexer	layer:	Software	parsing	stamp	transactions,	maintaining	asset	state,	serving	APIs

Critical	distinction:	Encoding	determines	WHERE	data	is	stored	(UTXOs).	Asset	tracking	determines	WHO	owns	

WHAT	(accounts).	These	layers	are	independent—SRC-20	tokens	use	UTXO	storage	for	transaction	permanence	

but	account	balances	for	ownership	tracking.

1.4	Design	Principles

Permanence	over	cost:	Pay	Bitcoin's	true	storage	cost	rather	than	rely	on	prunable	witness	data	or	external	

systems.	Expensive	stamps	reflect	accurate	economics	of	permanent	Bitcoin	storage.

Simplicity	over	features:	Account-based	assets	simpler	than	UTXO-bound	tokens.	Proven	Counterparty	model	

beats	novel	approaches	requiring	complex	state	tracking.

Bitcoin-native	alignment:	Work	with	Bitcoin's	economic	incentives	(UTXO	storage	fees	support	miners)	rather	

than	fight	them	(clever	witness	hacks	ultimately	prunable).

Community	governance:	Fair	launches	(no	pre-mines),	organic	growth	(no	VC	funding),	cultural	values	

(authenticity	over	speculation).	KEVIN's	success	demonstrates	aligned	incentives	create	sustainable	ecosystems.

Extensibility:	Base	stamp	protocol	provides	permanence	primitive.	Standards	like	SRC-20/721/101	add	

semantics	without	modifying	underlying	encoding.	Future	protocols	can	leverage	same	UTXO	permanence.

1.5	Document	Scope

This	whitepaper	specifies:

-	UTXO	storage	architecture	and	data	encoding	—	bare	multisig	and	P2WSH/OLGA	(Section	2)

-	Token	standards	—	SRC-20,	SRC-721,	SRC-101	(Section	3)

-	Economic	model	(Section	4)

-	Stamps	Improvement	Proposals	/	SIP	governance	(Section	5)

-	Implementation	guidelines	(Section	6)

-	Security	analysis	(Section	7)

-	Future	work	and	research	directions	(Section	8)

Out	of	scope:	Wallet	integration	details,	specific	indexer	implementations,	user	interface	design,	market	

dynamics.	Focus	is	protocol	specification	for	implementers.

1.6	Terminology

-	Stamp:	Non-fungible	digital	asset	permanently	stored	in	Bitcoin	UTXO	set	via	bare	multisig	or	P2WSH	

encoding

-	SRC-20:	Fungible	token	standard	atop	stamps,	using	account-based	balance	tracking

-	UTXO	set:	Set	of	all	unspent	transaction	outputs	in	Bitcoin;	consensus-critical	data	structure	required	for	

transaction	validation

-	Account-based:	Asset	ownership	tracked	per	address	(account	balance)	rather	than	per	UTXO	(UTXO-bound	

tokens)

-	Bare	multisig:	Native	Bitcoin	multisig	scripts	used	to	encode	data	in	fake	pubkeys

-	P2WSH/OLGA:	Pay-to-Witness-Script-Hash	outputs	storing	data	in	witness	scripts	(consensus-critical	but	

weight-discounted)

-	Counterparty:	First	Bitcoin	metaprotocol	(est.	2014);	provides	account-based	asset	model	inherited	by	Bitcoin	

Stamps

-	Indexer:	Software	parsing	stamp	transactions	from	Bitcoin	blockchain,	maintaining	asset	state	database,	

serving	API	queries

Next:	[Protocol	Architecture	→](./architecture.md)

2.	Protocol	Architecture

2.1	Architectural	Overview

Bitcoin	Stamps	employs	a	layered	architecture	separating	concerns:

`
┌───┐
│																	APPLICATION	LAYER																								│
│		Wallets,	Explorers,	Minting	Interfaces,	DEX	Protocols		│
└────────────────────┬────────────────────────────────────┘
																					│
┌────────────────────┴────────────────────────────────────┐
│																		STANDARDS	LAYER																									│
│					SRC-20	(Tokens)		│		SRC-721	(Recursion)		│		SRC-101	│
│																					(Names)																														│
└────────────────────┬────────────────────────────────────┘
																					│
┌────────────────────┴────────────────────────────────────┐
│																	ASSET	TRACKING	LAYER																					│
│								Account-based	Ledger	(Counterparty	Model)									│
│			Address	Balances,	Ownership	State,	Transfer	History			│
└────────────────────┬────────────────────────────────────┘

																					│
┌────────────────────┴────────────────────────────────────┐
│																		ENCODING	LAYER																										│
│			Bare	Multisig	(Pre-865k)		│		P2WSH/OLGA	(Post-865k)		│
│											Data	→	Bitcoin	Transaction	Outputs													│
└────────────────────┬────────────────────────────────────┘
																					│
┌────────────────────┴────────────────────────────────────┐
│																		STORAGE	LAYER																											│
│																Bitcoin	UTXO	Set																										│
│						Consensus-Critical,	Unprunable,	Universal											│
└───┘
`

Key	architectural	principle:	Data	encoding	(UTXO	storage)	is	independent	from	asset	tracking	(account	

balances).	Stamps	permanently	embed	transaction	data	in	Bitcoin	outputs	while	maintaining	ownership	through	

account	ledger.

2.2	UTXO	Storage	Model

2.2.1	Bitcoin	UTXO	Set

Bitcoin	maintains	an	Unspent	Transaction	Output	(UTXO)	set—the	complete	list	of	all	unspent	outputs	on	the	

blockchain.	This	set	is:

-	Consensus-critical:	Required	for	validating	new	transactions	(ensure	inputs	reference	valid	UTXOs)

-	Universal:	Every	full	node	maintains	identical	UTXO	set

-	Unprunable:	Cannot	be	deleted	without	breaking	transaction	validation

-	Permanent:	Persists	as	long	as	Bitcoin	network	operates

UTXO	structure:

` rust

struct	UTXO	{

				txid:	[u8;	32],											//	Transaction	ID

				vout:	u32,																//	Output	index

				amount:	u64,														//	Satoshis

				scriptPubKey:	Vec<u8>,				//	Locking	script

				height:	u32,														//	Block	height

}

`

Validation	requirement:	To	validate	a	transaction	spending	UTXO	X,	nodes	must:

1.	Verify	X	exists	in	UTXO	set

2.	Check	spending	transaction	provides	valid	unlock	script

3.	Verify	amount	conservation	(inputs	≥	outputs	+	fees)

4.	Execute	output	scripts	to	verify	spending	conditions

Critical	insight:	Any	data	embedded	in	 scriptPubKey 	must	be	stored	by	all	nodes	to	validate	future	spends.	

This	makes	UTXO-embedded	data	consensus-critical	and	unprunable.

2.2.2	Why	UTXO	Storage	Guarantees	Permanence

Contrast	with	witness	data	(SegWit):

Witness	data	(signatures,	witness	scripts):

-	Required	only	during	transaction	validation

-	After	validation,	nodes	can	prune	witness	data

-	Not	part	of	transaction	hash	(malleability	fix)

-	Not	consensus-critical	for	future	transactions

-	Result:	Witness	data	is	prunable,	not	guaranteed	permanent

UTXO	data	(scriptPubKey,	amounts):

-	Required	for	all	future	transaction	validation

-	Cannot	be	pruned	without	breaking	validation

-	Part	of	transaction	hash	(UTXO	uniquely	identified	by	txid:vout)

-	Consensus-critical	for	network	operation

-	Result:	UTXO	data	is	unprunable,	guaranteed	permanent

Bitcoin	Stamps	strategy:	Embed	asset	data	in	scriptPubKey	(output	scripts)	rather	than	witness	data.	This	

makes	stamp	data	UTXO-embedded	and	thus	consensus-critical.

2.2.3	UTXO	Set	Size	Implications

UTXO	storage	has	real	cost—every	full	node	stores	entire	UTXO	set	in	fast-access	databases.	As	of	2026:

-	~150M	UTXOs	globally	(~6GB	UTXO	database)

-	Each	stamp	adds	1-20	UTXOs	depending	on	data	size

-	Trade-off:	Higher	fees	for	permanent	storage	vs	lower	fees	for	prunable	witness	data

Design	philosophy:	Accept	higher	costs	for	true	permanence.	Bitcoin	Stamps	reflects	accurate	economics	of	

permanent	Bitcoin	storage.	Protocols	using	witness	data	or	external	storage	have	hidden	costs	(pruning	risk,	

service	maintenance,	infrastructure	failure).

2.3	Encoding	Layer	Architecture

2.3.1	Bare	Multisig	Encoding	(Blocks	779,652	-	865,000)

Structure:	Use	Bitcoin's	native	multisig	scripts	to	encode	data.

Multisig	script	format:

`
OP_1	<pubkey1>	<pubkey2>	<pubkey3>	OP_3	OP_CHECKMULTISIG

`

Data	encoding:

-	 <pubkey1> ,	 <pubkey2> ,	 <pubkey3> 	are	33-byte	compressed	pubkey	format

-	Actually	contain	stamp	data,	not	real	public	keys

-	2-of-3	multisig:	keys	1	&	2	are	data	(66	bytes),	key	3	is	real	signing	key

-	Multiple	outputs	chained	for	larger	data

Example	(simplified):

` python

Encode	64	bytes	of	image	data	in	bare	multisig

output_script	=	OP_1	+	data[0:33]	+	data[33:66]	+	real_pubkey	+	OP_3	+	OP_CHECKMULTISIG

`

Characteristics:

-	Permanent:	Data	in	scriptPubKey,	part	of	UTXO	set

-	Consensus-critical:	Required	to	spend	multisig	UTXO

-	Expensive:	Full	transaction	weight	(4	WU	per	byte)

-	Simple:	Native	Bitcoin	scripts,	no	special	rules

-	Universal:	Any	Bitcoin	node	can	validate

Limitations:

-	High	fees	due	to	no	witness	discount

-	Large	stamps	require	many	outputs	(cost	scales	linearly)

-	Multisig	scripts	flagged	by	some	mempool	policies	(relay	issues)

2.3.2	P2WSH/OLGA	Encoding	(Block	865,000+)

OLGA	(Octet	Linked	Graphical	Artifacts)	uses	Pay-to-Witness-Script-Hash	for	30-95%	cost	reduction.

Structure:

`
Output	script:	OP_0	<32-byte-script-hash>

Witness:	<actual-witness-script>

`

Data	encoding:

` python

Encode	data	in	P2WSH	witness	script

witness_script	=	data_chunks	+	OP_DROP_sequence	+	<conditions>

script_hash	=	SHA256(witness_script)

output_script	=	OP_0	+	script_hash

To	spend:	provide	witness_script	in	witness	field

witness	=	[signatures,	witness_script]

`

Witness	script	construction:

`
<data_chunk_1>	OP_DROP	<data_chunk_2>	OP_DROP	...	<signature_check>

`
Data	chunks	are	pushed	to	stack	and	dropped,	leaving	only	signature	verification	logic.

Characteristics:

-	Still	consensus-critical:	Witness	script	must	be	provided	to	spend	P2WSH	output

-	Weight	discount:	Witness	data	counted	at	1/4	weight	(WU)

-	Cost	reduction:	30-95%	vs	bare	multisig

-	Same	permanence:	Witness	scripts	stored	in	UTXO	set	(not	prunable)

-	Better	relay:	P2WSH	is	standard,	no	mempool	policy	issues

Key	distinction:	P2WSH	witness	scripts	(containing	data)	are	consensus-critical,	unlike	witness	signatures	

(prunable).	To	spend	P2WSH	output,	validator	must:

1.	Hash	provided	witness	script

2.	Compare	to	hash	in	output	script

3.	Execute	witness	script

4.	Verify	conditions	satisfied

Result:	Witness	scripts	cannot	be	pruned—required	for	validation.	Stamp	data	embedded	in	witness	scripts	

remains	permanent	and	unprunable.

2.3.3	Encoding	Layer	Comparison

|	Dimension	|	Bare	Multisig	|	P2WSH/OLGA	|

|-----------|---------------|------------|

|	Permanence	|	✅ 	UTXO-embedded	|	✅ 	UTXO-embedded	(witness	script)	|

|	Consensus-critical	|	✅ 	Yes	|	✅ 	Yes	(script	hash	validation)	|

|	Prunable	|	❌	No	|	❌	No	(scripts	required	for	spending)	|

|	Cost	|	High	(4	WU/byte)	|	Low	(1	WU/byte	witness)	|

|	Relay	|	Potential	issues	|	✅ 	Standard	P2WSH	|

|	Complexity	|	Simple	|	Moderate	(witness	construction)	|

|	Block	range	|	779,652	-	present	|	865,000	-	present	|

Protocol	evolution:	OLGA	doesn't	replace	bare	multisig—both	remain	valid.	Stamps	can	use	either	encoding;	

indexers	must	support	both.	OLGA	is	optimization,	not	consensus	change.

2.4	Account-Based	Asset	Tracking

2.4.1	The	Account	Model

Critical	architectural	decision:	Bitcoin	Stamps	uses	account-based	asset	tracking,	NOT	UTXO-based.

Account-based	(Bitcoin	Stamps,	Counterparty):

` python

State:	simple	address	→	balance	mapping

balances	=	{

				"bc1q...xyz":	{"KEVIN":	1000,	"STAMP":	50},

				"bc1q...abc":	{"KEVIN":	500}

}

Transfer:	update	sender	and	receiver	balances

def	transfer(from_addr,	to_addr,	asset,	amount):

				balances[from_addr][asset]	-=	amount

				balances[to_addr][asset]	+=	amount

`

UTXO-based	(Colored	Coins,	theoretical	models):

` python

State:	track	which	UTXOs	contain	which	tokens

token_utxos	=	{

				"txid1:vout0":	{"asset":	"TOKEN",	"amount":	100},

				"txid2:vout1":	{"asset":	"TOKEN",	"amount":	200}

}

Transfer:	complicated	UTXO	tracking	across	inputs/outputs

def	transfer(tx):

				input_tokens	=	sum(token_utxos[input]	for	input	in	tx.inputs)

				#	Allocate	to	outputs	(complex	rules	for	multi-input,	change,	fees)

				distribute_to_outputs(tx.outputs,	input_tokens)

`

Why	account-based	wins:

1.	Simplicity:	Address	balances	simpler	than	UTXO	tracking	across	coin	mixing

2.	Privacy:	Don't	reveal	which	specific	coins	hold	tokens

3.	Efficiency:	Single	DB	query	for	balance	vs	scanning	UTXO	set

4.	Proven:	Counterparty	ran	10+	years	on	account	model

5.	UX:	Users	understand	"address	balance"	better	than	"token-bearing	UTXO"

Common	misconception:	"SRC-20	tokens	are	locked	in	UTXOs."	False.	SRC-20	balances	are	tracked	per	address	

in	indexer	database.	Tokens	aren't	"in"	any	specific	UTXO—ownership	is	account-based.

2.4.2	Asset	State	Management

Indexer	responsibilities:

1.	Scan	Bitcoin	blocks	for	stamp	transactions

2.	Decode	stamp	data	(bare	multisig	or	P2WSH)

3.	Parse	asset	operations	(DEPLOY,	MINT,	TRANSFER)

4.	Update	account	balances	per	consensus	rules

5.	Serve	API	queries	for	balances,	history,	metadata

State	schema	(simplified):

` sql

--	Account	balances

CREATE	TABLE	balances	(

				address	TEXT,

				asset	TEXT,

				amount	NUMERIC,

				PRIMARY	KEY	(address,	asset)

);

--	Transfer	history

CREATE	TABLE	transfers	(

				txid	TEXT,

				block_height	INTEGER,

				from_address	TEXT,

				to_address	TEXT,

				asset	TEXT,

				amount	NUMERIC,

				timestamp	INTEGER

);

--	Asset	metadata

CREATE	TABLE	assets	(

				asset_name	TEXT	PRIMARY	KEY,

				deploy_txid	TEXT,

				deploy_block	INTEGER,

				total_supply	NUMERIC,

				divisible	BOOLEAN,

				locked	BOOLEAN

);

`

Consensus	rules	(SRC-20	example):

` python

def	process_src20_transfer(tx,	from_addr,	to_addr,	asset,	amount):

				#	Validation

				if	balances[from_addr][asset]	<	amount:

								return	False		#	Insufficient	balance

				#	State	update

				balances[from_addr][asset]	-=	amount

				balances[to_addr][asset]	+=	amount

				#	History

				transfers.append({

								'txid':	tx.txid,

								'from':	from_addr,

								'to':	to_addr,

								'asset':	asset,

								'amount':	amount,

								'block':	tx.block_height

				})

				return	True

`

Reorganization	handling:

` python

def	handle_reorg(old_chain_tip,	new_chain_tip):

				#	Rollback	state	to	fork	point

				fork_height	=	find_fork_point(old_chain_tip,	new_chain_tip)

				rollback_to_height(fork_height)

				#	Replay	blocks	from	fork	point	to	new	tip

				for	block	in	range(fork_height	+	1,	new_chain_tip.height	+	1):

								process_block(block)

`

2.4.3	Transfer	Mechanism

Transaction	flow:

1.	User	action:	Send	100	KEVIN	tokens	to	recipient

2.	Transaction	construction:

			-	Create	Bitcoin	transaction	from	sender's	address

			-	Embed	SRC-20	TRANSFER	operation	in	stamp	encoding:

					 ` json

					{

							"p":	"src-20",

							"op":	"transfer",

							"tick":	"KEVIN",

							"amt":	"100",

							"to":	"bc1q...recipient"

					}

					 `
			-	Broadcast	to	Bitcoin	network

3.	Block	confirmation:	Transaction	included	in	Bitcoin	block

4.	Indexer	processing:

			-	Detects	stamp	transaction

			-	Decodes	TRANSFER	operation

			-	Validates	sender	has	100+	KEVIN	balance

			-	Updates	balances:	sender	-100,	recipient	+100

5.	User	query:	Recipient	checks	balance	via	indexer	API	→	sees	100	KEVIN

Key	point:	The	Bitcoin	transaction	itself	only	stores	the	TRANSFER	instruction.	Actual	balance	updates	happen	

in	indexer	state.	Indexers	independently	compute	same	state	by	replaying	transactions.

Consensus:	Multiple	indexers	process	same	blockchain,	arrive	at	identical	balances.	If	indexers	disagree,	

indicates	implementation	bug—consensus	rules	must	be	deterministic.

2.5	Layer	Separation

2.5.1	Encoding	≠	Ownership

Encoding	layer	(UTXO	storage):

-	Determines	WHERE	data	is	stored	(which	UTXOs)

-	Ensures	permanence	(consensus-critical	storage)

-	Handles	Bitcoin	transaction	construction

-	Example:	Bare	multisig	or	P2WSH	encoding

Asset	tracking	layer	(account	balances):

-	Determines	WHO	owns	WHAT	(balances	per	address)

-	Manages	transfer	logic	and	validation

-	Maintains	asset	metadata	and	history

-	Example:	SRC-20	balance	ledger

Independence:	You	can	change	encoding	(bare	multisig	→	P2WSH)	without	changing	asset	tracking.	You	can	add	

new	asset	standards	(SRC-721,	SRC-101)	without	changing	encoding.

2.5.2	Standards	Layer	Flexibility

Base	stamps	protocol:

-	Defines	encoding	methods	(bare	multisig,	P2WSH)

-	No	inherent	asset	semantics

-	Just	permanent	data	storage	on	Bitcoin

Standards	define	semantics:

-	SRC-20:	Fungible	tokens	with	DEPLOY/MINT/TRANSFER	operations

-	SRC-721:	Recursion	standard	for	composable	stamps

-	SRC-101:	Decentralized	naming	system

-	Future	standards:	Can	add	new	semantics	without	protocol	changes

Example:	A	single	stamp	transaction	can	embed:

` json

{

		"stamp":	{

				"image":	"base64_data",

				"src20":	{"op":	"mint",	"tick":	"TOKEN",	"amt":	"1000"},

				"src721":	{"parent":	1234,	"trait":	"golden"}

		}

}

`
Multiple	standards	operate	on	same	underlying	UTXO	permanence.

2.6	Architecture	Summary

Layered	design:

1.	Storage:	Bitcoin	UTXO	set	(consensus-critical	permanence)

2.	Encoding:	Bare	multisig	or	P2WSH	(data	→	UTXOs)
3.	Asset	tracking:	Account-based	ledger	(Counterparty	model)

4.	Standards:	SRC-20/721/101	defining	asset	semantics

5.	Applications:	Wallets,	DEXs,	explorers	building	on	indexer	APIs

Key	innovations:

-	UTXO	permanence:	Leverage	Bitcoin's	consensus	requirements	for	guaranteed	storage

-	Account	simplicity:	Counterparty-proven	model	avoids	UTXO	tracking	complexity

-	Layer	separation:	Encoding	independent	from	asset	logic;	standards	independent	from	protocol

-	P2WSH	optimization:	OLGA	reduces	costs	30-95%	while	maintaining	permanence

Tradeoffs:

-	Higher	fees:	True	cost	of	permanent	Bitcoin	storage	(vs	prunable	witness	tricks)

-	Indexer	dependency:	Need	off-chain	state	computation	(vs	pure	Bitcoin	validation)

-	Larger	UTXO	set:	Global	node	storage	impact	(vs	transient	witness	data)

Design	philosophy:	Embrace	Bitcoin's	constraints,	pay	true	costs,	achieve	genuine	permanence.	No	clever	hacks

—just	aligned	incentives	and	honest	economics.

Next:	[Token	Standards	→](./token-standards.md)

Previous:	[←	Introduction](./introduction.md)

4.	Token	Standards

The	Bitcoin	Stamps	protocol	supports	three	distinct	token	standards,	each	optimized	for	specific	use	cases	

while	maintaining	the	core	principle	of	UTXO-based	immutability.	All	standards	leverage	Bitcoin's	Proof-of-Work	

consensus	mechanism,	ensuring	data	integrity	once	confirmed.

4.1	SRC-20:	Fungible	Token	Standard

Overview

SRC-20	is	an	account-based	fungible	token	protocol	that	enables	fair,	accessible	token	creation	with	only	

standard	Bitcoin	miner	fees.	Inspired	by	BRC-20	but	designed	with	Stamps'	immutability	guarantees,	SRC-20	

operates	directly	on	the	Bitcoin	blockchain	without	dependency	on	Counterparty	since	block	796,000.

Critical	Design	Note:	SRC-20	is	account-based.	Balances	are	tracked	per	address	in	indexer	state,	NOT	per	

UTXO.	This	distinguishes	it	from	UTXO-based	protocols	where	tokens	are	locked	in	specific	transaction	outputs.

First	Deployment

The	KEVIN	token,	deployed	by	Arwyn	at	block	788,041,	represents	the	genesis	SRC-20	deployment.

Transaction	Structure

SRC-20	transactions	follow	standardized	JSON	encoding	embedded	in	Bitcoin	transaction	outputs.	Required	

fields	include:

-	 p :	Protocol	identifier	("src-20")

-	 op :	Operation	type	(deploy,	mint,	transfer)

-	 tick :	Token	ticker	symbol

-	Additional	operation-specific	parameters

Operations

DEPLOY:	Initializes	a	new	token	collection	with	supply	limits,	per-mint	caps,	and	optional	pricing.

MINT:	Creates	new	token	units	within	deployment	constraints.	Minting	continues	until	max	supply	is	reached.

TRANSFER:	Moves	tokens	between	addresses.	The	indexer	validates	sender	balance	before	updating	account	

states.

Validation	and	Indexing

The	indexer	validates	transactions	through	multi-step	verification:

1.	Length	Verification:	First	two	bytes	represent	expected	decoded	data	length	in	hex

2.	JSON	Validation:	Transaction	must	parse	as	valid	JSON	with	required	fields

3.	Balance	Check:	For	transfers,	sender	must	hold	sufficient	balance

4.	State	Update:	Successful	transactions	update	the	account-based	balance	ledger

Invalid	transactions	receive	no	stamp	number	and	do	not	affect	user	balances.	The	Rust-based	parser	provides	

20-50x	performance	improvement	over	pure	Python	implementations.

Economic	Model

SRC-20	deployments	incur	only	Bitcoin	miner	fees,	eliminating	token	burn	requirements	or	auxiliary	

cryptocurrency	costs.	This	"fair	launch"	model	ensures	accessibility	while	maintaining	immutability	through	

UTXO	set	storage.

4.2	SRC-721:	Layered	NFT	Standard

Overview

SRC-721	addresses	the	economic	challenge	of	high-resolution	NFT	collections	by	introducing	a	layered	

composition	architecture.	Instead	of	embedding	complete	images	per	mint,	collections	store	reusable	layer	

components	once,	then	reference	them	through	lightweight	JSON	manifests.

Architecture

Layer	Storage:	Collections	deploy	up	to	10	layered	stamp	images	using	standard	Stamps	protocol.	Each	layer	is	

independently	stamped	with	full	immutability	guarantees.

Composition	Manifests:	Users	mint	small	JSON	files	(~100-500	bytes)	that	reference	pre-stamped	layers,	

specifying:

-	Layer	stamp	IDs

-	Stacking	order	(z-index)

-	Optional	layer	transformations

-	Metadata	fields

Rendering:	Client	applications	reconstruct	final	artwork	by	retrieving	and	compositing	referenced	layers	in	

specified	order.

Benefits

1.	Cost	Efficiency:	60-70%	reduction	in	per-NFT	minting	costs	through	layer	reuse

2.	High	Fidelity:	Supports	indexed	color	palettes	and	high-resolution	assets	per	layer

3.	Composability:	Enables	10K	PFP	projects	and	generative	art	collections

4.	Immutability:	Both	layers	and	manifests	are	permanently	stored	in	UTXO	set

Transaction	Fields

Required	fields	for	valid	SRC-721	transactions:

-	 p :	"src-721"

-	 op :	Operation	type	(deploy,	mint)

-	 layers :	Array	of	stamp	IDs	comprising	the	composition

-	 attributes :	Metadata	describing	trait	composition

First	Implementation

The	AVIME	collection	by	Derp	Herpenstein,	deployed	at	block	788041,	pioneered	the	SRC-721	standard.

4.3	SRC-721r:	Recursive	Rendering	Standard

Evolution	from	SRC-721

SRC-721r	extends	the	layered	model	by	incorporating	on-chain	JavaScript	libraries	for	complex	recursive	

rendering.	This	enables	animated,	interactive,	and	algorithmically	generated	artwork	while	maintaining	

complete	on-chain	data	storage.

Technical	Capabilities

JavaScript	Runtime:	Manifests	can	include	or	reference	stamped	JavaScript	libraries	that	execute	client-side	to	

produce	final	artwork.

Recursive	Composition:	Supports:

-	Nested	layer	hierarchies

-	Algorithmic	pattern	generation

-	Animation	sequences

-	Interactive	elements	responding	to	block	data	or	timestamps

Library	Reuse:	Common	rendering	functions	(e.g.,	noise	generators,	easing	functions)	are	stamped	once	and	

referenced	across	collections.

Use	Cases

-	Generative	art	projects	with	algorithmic	variation

-	Animated	collections	with	on-chain	animation	logic

-	Interactive	NFTs	responding	to	blockchain	state

-	Complex	visual	effects	requiring	computational	rendering

Security	Considerations

All	JavaScript	executes	client-side	in	sandboxed	environments.	The	protocol	does	not	introduce	execution	risk	

to	the	Bitcoin	network	itself,	as	rendering	is	strictly	a	presentation-layer	concern.

4.4	SRC-101:	Domain	Registration	Standard

Overview

SRC-101	provides	a	Bitcoin-native	domain	name	service	leveraging	Stamps'	immutability	to	solve	UTXO-linked	

asset	challenges.	Jointly	developed	by	Bitname	and	Stamp	teams,	it	enables	permanent,	address-tied	naming	

while	supporting	the	entire	Bitcoin	ecosystem	including	Layer	2	solutions.

Core	Design

Domain	names	are	stamped	directly	onto	the	Bitcoin	blockchain	as	permanent	records	tied	to	user	addresses.	

This	separates	name	ownership	from	UTXO	management,	preventing	accidental	spending	of	domain-bearing	

transaction	outputs.

Operations

####	DEPLOY

Creates	a	name	service	collection	with	deployment	parameters:

-	 name :	Collection	identifier

-	 tick :	Token	symbol	(e.g.,	"BNS")

-	 owner :	Must	match	transaction	signer

-	 pri :	Price	in	satoshis	per	mint

-	 max :	Supply	limit	(0	=	unlimited)

-	 lim :	Maximum	10	mint	operations	per	transaction

-	Optional	whitelist	with	discount	rates

####	MINT

Registers	individual	domain	names:

-	References	deploy	transaction	hash

-	 tokenid :	Name	in	hexadecimal	format

-	 dua :	Duration	in	years	before	expiration

-	 toaddress :	Recipient	(may	differ	from	transaction	signer)

####	TRANSFER

Moves	domain	ownership	between	addresses:

-	Transaction	signer	must	be	current	owner

-	 toaddress :	New	recipient	address

-	Supports	all	Bitcoin	address	types	(Legacy,	SegWit,	Taproot)

####	SETRECORD

Associates	resolver	data	with	domains:

-	Supported	record	types:	"address"	(resolution	target)	and	"txt"	(arbitrary	metadata)

-	Signer	must	be	service	owner

-	Multiple	records	permitted;	duplicate	keys	overwrite	previous	values

####	RENEW

Extends	domain	lease	period:

-	Requires	owner	authorization

-	Payment	in	satoshis	per	deployment	pricing

-	Extends	expiration	by	specified	duration

####	TRANSFEROWNERSHIP

Transfers	administrative	control	of	the	name	service:

-	Service	owner	only

-	New	owner	assumes	deployment-level	permissions

Address	Interoperability

SRC-101	supports	resolution	and	interconversion	of	all	Bitcoin	address	types,	enabling	seamless	integration	

with:

-	Mainnet	(Legacy,	P2SH,	P2WPKH,	P2WSH,	Taproot)

-	Layer	2	protocols	(Lightning	Network,	sidechains)

-	Bitcoin	ecosystem	extensions

Economic	Model

Deployers	set	per-mint	pricing	in	satoshis,	creating	sustainable	name	services	without	reliance	on	external	fee	

structures.	Renewal	fees	provide	ongoing	revenue	while	ensuring	active	namespace	use.

4.5	Cross-Protocol	Guarantees

All	token	standards	share	fundamental	properties:

1.	Immutability:	Data	stored	in	UTXO	set	cannot	be	pruned	or	modified

2.	Consensus	Security:	Protected	by	Bitcoin's	Proof-of-Work

3.	Indexer	Validation:	Multiple	independent	indexer	implementations	can	verify	state

4.	No	Burn	Requirements:	Only	Bitcoin	miner	fees	required

5.	Open	Source:	Reference	indexer	and	validation	logic	publicly	available

These	guarantees	distinguish	Stamps-based	protocols	from	witness-data	alternatives	that	compromise	on	

permanence	or	introduce	auxiliary	dependencies.

References:

-	[Bitcoin	Stamps	Indexer	Repository](https://github.com/stampchain-io/btc_stamps)

-	[SRC-101	Specification](https://bitname.gitbook.io/bitname/src-101)

-	[Stampchain	FAQ](https://stampchain.io/faq)

-	[SRC-20	Token	Standard	Overview](https://trustmachines.co/learn/what-is-the-src-20-token-standard/)

-	[Bitcoin	Stamps	vs	Ordinals	Analysis](https://coinpedia.org/guest-post/bitcoin-stamps-vs-ordinals-deep-dive-

into-future-of-on-chain-permanence/)

5.	Economic	Model

The	Bitcoin	Stamps	protocol's	economic	model	is	fundamentally	shaped	by	its	design	choice	to	store	data	in	the	

UTXO	set	rather	than	witness	data.	This	section	analyzes	the	permanence	guarantees,	cost	structures,	and	

economic	tradeoffs	inherent	to	this	architecture.

5.1	UTXO	Set	Permanence	Guarantees

Architectural	Foundation

Bitcoin	Stamps	are	stored	directly	in	Bitcoin's	Unspent	Transaction	Output	(UTXO)	set,	which	full	nodes	

maintain	in	memory	or	indexed	storage	for	efficient	transaction	validation.	This	contrasts	with	witness-data	

protocols	(e.g.,	Ordinals)	that	leverage	SegWit's	discounted	witness	field	for	data	inscription.

Permanence	Mechanism

Unprunable	by	Design:	UTXO	set	entries	cannot	be	pruned	from	full	nodes	without	breaking	consensus	rules.	

While	nodes	can	prune	historical	block	data	and	witness	information	after	verification,	they	must	retain	all	

unspent	outputs	to	validate	new	transactions.

Stamp	UTXOs:	Once	created,	Stamp-bearing	UTXOs	are	expected	to	remain	unspent	indefinitely,	ensuring:

1.	Data	persists	in	the	globally	replicated	UTXO	set

2.	No	dependency	on	archival	node	policies

3.	Immunity	to	pruning	configurations

Counterparty	Integration:	Classic	Stamps	leverage	Counterparty's	bare	multisig	(P2MS)	outputs,	which	chunk	

image	data	across	multiple	outputs.	By	avoiding	OP_RETURN	(limited	to	80	bytes	and	prunable),	Stamps	achieve	

true	immutability.

Economic	Implications	of	Permanence

UTXO	Set	Bloat:	Every	Stamp	contributes	to	permanent	UTXO	set	growth,	imposing	ongoing	storage	costs	on	

all	full	nodes.	As	of	2026,	the	UTXO	set	exceeds	10GB,	with	protocols	like	Stamps	representing	a	measurable	

fraction.

Node	Operation	Costs:	Validators	bear	the	cost	of	storing	Stamp	UTXOs	perpetually,	creating	a	commons	

dilemma	where	minters	externalize	storage	costs	to	the	network.

Economic	Finality:	Permanence	ensures	that	Stamp	data	survives	even	catastrophic	scenarios	(e.g.,	protocol	

deprecation,	indexer	abandonment).	The	data	exists	independently	of	any	external	service.

5.2	Storage	Format	Evolution

Bare	Multisig	(OP_MULTISIG)

Original	Format:	Early	Stamps	used	Counterparty's	bare	multisig	encoding:

-	Base64-encode	image	binary

-	Split	encoded	data	into	33-byte	chunks

-	Embed	chunks	as	fake	public	keys	in	multisig	outputs	(e.g.,	1-of-3,	2-of-3)

Size	Limits:	Maximum	7KB	per	Stamp	due	to	standard	transaction	size	constraints.

Weight	Calculation:	Multisig	data	is	stored	in	the	base	transaction	block,	counting	as	4	weight	units	per	byte	

under	SegWit's	accounting.

P2WSH	Migration

Efficiency	Gains:	Pay-to-Witness-Script-Hash	(P2WSH)	outputs	store	data	in	the	witness	field,	which	receives	a	

75%	discount	under	SegWit	rules:

-	Base	block	data:	4	weight	units	per	byte

-	Witness	data:	1	weight	unit	per	byte

Cost	Reduction:	P2WSH-based	Stamps	pay	~25%	of	bare	multisig	fees	for	equivalent	data	size.

Pruning	Concern:	Witness	data	is	technically	prunable	by	nodes	that	don't	serve	historical	blocks.	However,	

archival	nodes	and	blockchain	explorers	retain	witness	data,	ensuring	practical	permanence.

Stamps	P2WSH	Variant:	Stamps	protocol	adopted	P2WSH	for	certain	formats	while	maintaining	UTXO	set	

references,	balancing	cost	efficiency	with	permanence	goals.

OLGA	Encoding

Breakthrough	Optimization:	P2WSH	encoding	was	enabled	at	block	833,000	

(CP_P2WSH_FEAT_BLOCK_START),	with	the	first	SRC-20	OLGA	transaction	at	block	865,000	

(BTC_SRC20_OLGA_BLOCK).	OLGA	(Octet	Linked	Graphical	Artifacts)	eliminates	Base64	encoding:

Technical	Innovation:

-	Stores	raw	binary	data	directly	in	transaction	outputs

-	Removes	33%	overhead	from	Base64	conversion

-	Achieves	50%	transaction	size	reduction	vs.	OP_MULTISIG

-	Reduces	minting	costs	by	60-70%

Size	Expansion:	Maximum	file	size	increased	to	64KB,	enabling	higher-fidelity	artwork	and	larger	datasets.

Adoption:	OLGA	became	the	standard	for	new	Stamps	due	to	dramatic	cost	savings	without	compromising	

immutability.

5.3	Miner	Fee	Economics

Fee	Market	Competition

Base	Layer	Fees:	Stamp	minters	compete	in	Bitcoin's	fee	market	alongside	financial	transactions.	During	

congestion	(e.g.,	Ordinals	inscription	waves,	halving	periods),	Stamp	costs	scale	proportionally.

Fee	Rate	Dynamics:

-	Low	congestion:	1-5	sat/vByte	(Stamps	cost	$0.50-$5	per	KB)

-	Medium	congestion:	20-50	sat/vByte	(Stamps	cost	$10-$30	per	KB)

-	High	congestion:	100-500	sat/vByte	(Stamps	cost	$60-$300	per	KB)

Batching	Economies:	Minting	multiple	Stamps	in	a	single	transaction	amortizes	overhead:

-	Single	Stamp:	~300	bytes	overhead	+	data

-	10	Stamps:	~300	bytes	overhead	+	(10	×	data),	reducing	per-Stamp	cost

Cost	Structure	Analysis

Per-Stamp	Breakdown	(OLGA	format,	5KB	image,	20	sat/vByte):

|	Component	|	Size	|	Cost	|

|-----------|------|------|

|	Transaction	overhead	|	150	bytes	|	3,000	sats	|

|	OLGA	data	(5KB)	|	5,000	bytes	|	100,000	sats	|

|	Output	creation	|	50	bytes	|	1,000	sats	|

|	Total	|	5,200	bytes	|	~104,000	sats	(~$62	@	$60K	BTC)	|

Comparative	Costs:

-	Ordinals	inscription	(5KB):	~26,000	sats	(~$16)	—	75%	cheaper	due	to	witness	discount

-	Classic	Stamp	(Base64):	~180,000	sats	(~$108)	—	73%	more	expensive	due	to	encoding	overhead

-	OLGA	Stamp:	~104,000	sats	(~$62)	—	balanced	cost-permanence	tradeoff

Miner	Revenue	Impact

Protocol	Contribution:	During	2023-2024	inscription	waves,	data-heavy	protocols	contributed	5-15%	of	miner	

fee	revenue,	with	Stamps	representing	a	smaller	but	consistent	fraction.

Incentive	Alignment:	Stamp	minters	directly	compensate	miners	for	permanent	block	space	allocation,	aligning	

economic	incentives	without	protocol	subsidies.

5.4	Storage	Cost	Comparison

Bitcoin	Stamps	vs.	Ordinals

|	Attribute	|	Bitcoin	Stamps	|	Ordinals	(Inscriptions)	|

|-----------|----------------|-------------------------|

|	Storage	Location	|	UTXO	set	(base	block	data	or	P2WSH	witness)	|	Witness	data	(SegWit)	|

|	Prunability	|	Unprunable	(UTXO	set)	|	Technically	prunable	(witness)	|

|	Cost	Multiplier	|	4x	(OP_MULTISIG)	to	1x	(P2WSH	OLGA)	|	1x	(witness	discount)	|

|	Size	Limit	|	64KB	(OLGA),	7KB	(legacy)	|	~400KB	(block	size	constraints)	|

|	Node	Impact	|	Perpetual	UTXO	set	growth	|	Witness	data	pruning	reduces	impact	|

|	Economic	Model	|	Minter	pays	permanent	externality	|	Minter	pays	discounted	temporary	cost	|

UTXO	Set	Growth	Implications

Long-Term	Costs:	As	of	2026,	storing	1GB	of	UTXO	data	costs	validators:

-	SSD	storage:	~$0.10/GB/year

-	RAM	caching	(performance	nodes):	~$5/GB/year

Scaling	Concerns:	If	Stamps	adoption	scales	to	100GB	UTXO	footprint,	validators	face:

-	$10/year	storage	costs	(SSD)

-	$500/year	RAM	costs	(high-performance	nodes)

These	costs	are	externalized	to	the	network,	raising	debate	over	sustainable	protocol	economics.

Alternative	Protocols

IPFS	+	Bitcoin	Anchoring:	Store	data	off-chain	(IPFS),	anchor	hashes	on	Bitcoin:

-	Cost:	~200	bytes	per	anchor	(~$2	at	20	sat/vByte)

-	Tradeoff:	Requires	IPFS	network	availability;	not	truly	immutable

Arweave	+	Bitcoin	Verification:	Permanent	storage	layer	with	Bitcoin	proof	references:

-	Cost:	~$5-$10	per	MB	on	Arweave

-	Tradeoff:	Dependency	on	Arweave	network;	cross-chain	trust	assumptions

Stamps	Advantage:	True	Bitcoin-native	permanence	without	external	dependencies,	at	the	cost	of	higher	fees	

and	UTXO	set	impact.

5.5	Economic	Sustainability

Protocol	Fee	Structure

No	Native	Fees:	Stamps	protocol	itself	collects	no	fees.	All	costs	are	miner	fees	paid	to	Bitcoin	validators.

Token	Economics	(SRC-20/721/101):

-	Deploy	Fees:	Set	by	deployer;	collected	in	satoshis	by	minting	smart	contracts	or	indexer-enforced	logic

-	Royalties:	Not	enforced	at	protocol	level;	marketplace-dependent

-	Renewal	Fees	(SRC-101):	Deployer-set	pricing	for	domain	lease	extensions

Miner	Incentive	Alignment

Short-Term:	Stamps	generate	direct	fee	revenue	for	miners,	incentivizing	block	inclusion	during	low-congestion	

periods.

Long-Term:	UTXO	set	growth	imposes	costs	on	future	miners/validators.	If	externalized	costs	exceed	fee	

revenue,	validators	may	advocate	for	protocol-level	restrictions.

Market-Driven	Equilibrium

Fee	Market	Regulation:	High	congestion	naturally	limits	Stamp	creation	as	costs	rise,	creating	self-regulating	

supply	dynamics.

Quality	vs.	Quantity:	Expensive	minting	favors	high-value	assets	(rare	art,	critical	data)	over	spam,	improving	

signal-to-noise	ratio.

Indexer	Sustainability:	Open-source	indexer	model	ensures	community-driven	validation	without	centralized	

service	dependencies.	Multiple	independent	indexers	can	verify	state,	preventing	single	points	of	failure.

5.6	Economic	Tradeoffs	Summary

Advantages

1.	True	Immutability:	UTXO-based	storage	guarantees	permanence	without	reliance	on	archival	nodes

2.	Censorship	Resistance:	Data	survives	even	if	protocol	indexers	cease	operation

3.	Bitcoin-Native	Security:	Inherits	full	Proof-of-Work	consensus	guarantees

4.	No	Auxiliary	Dependencies:	Only	Bitcoin	miner	fees	required;	no	token	burns	or	external	fees

Disadvantages

1.	High	Costs:	1-4x	more	expensive	than	witness-based	alternatives

2.	UTXO	Set	Externality:	Imposes	permanent	storage	costs	on	all	validators

3.	Scaling	Constraints:	Limited	to	~64KB	per	asset	(OLGA),	vs.	400KB	for	Ordinals

4.	Fee	Market	Competition:	Vulnerable	to	congestion-driven	cost	spikes

Strategic	Positioning

Bitcoin	Stamps	occupies	the	"maximum	permanence"	niche	within	Bitcoin's	data	inscription	ecosystem.	Users	

willing	to	pay	premium	costs	for	uncompromising	immutability	choose	Stamps	over	cheaper,	less	permanent	

alternatives.	This	positions	the	protocol	as	a	premium	store-of-value	layer	for	digital	artifacts	requiring	absolute	

permanence	guarantees.

5.7	Future	Economic	Considerations

UTXO	Set	Management	Proposals

Spent	Output	Archiving:	Future	Bitcoin	soft	forks	may	introduce	mechanisms	to	archive	spent	outputs	while	

maintaining	cryptographic	proofs,	potentially	affecting	Stamp	permanence.

Fee	Policy	Changes:	BIP	proposals	targeting	data-heavy	transactions	could	introduce	additional	costs	or	

restrictions	on	multisig/P2WSH	data	embedding.

Stamps	Adaptation:	Protocol	must	monitor	Bitcoin	Core	development	to	ensure	continued	viability	under	

potential	consensus	rule	changes.

Layer	2	Integration

Lightning	Network:	Stamps	could	leverage	LN	for	microtransactions	involving	SRC-20	tokens,	though	atomic	

swaps	face	account-based	model	challenges.

Sidechains:	Federated	sidechains	(e.g.,	Liquid)	may	support	Stamps-compatible	standards	with	different	cost	

structures.

Rollups:	Bitcoin	rollup	proposals	(e.g.,	BitVM)	could	enable	Stamps-like	permanence	at	reduced	on-chain	

footprint.

Competitive	Landscape	Evolution

As	Bitcoin's	data	inscription	ecosystem	matures,	protocols	will	differentiate	along	cost-permanence-

functionality	axes.	Stamps'	commitment	to	UTXO-based	immutability	positions	it	as	the	"gold	standard"	for	

applications	where	permanence	justifies	premium	costs—archival	NFTs,	legal	records,	decentralized	identity	

systems,	and	foundational	digital	artifacts.

References:

-	[Bitcoin	UTXO	Set	Research](https://research.mempool.space/utxo-set-report/)

-	[SegWit	Witness	Discount	Analysis](https://bitcoinmagazine.com/technical/the-witness-discount-why-some-

bytes-are-cheaper-than-others)

-	[Bitcoin	Stamps	vs	Ordinals	Permanence	Analysis](https://coinpedia.org/guest-post/bitcoin-stamps-vs-ordinals-

deep-dive-into-future-of-on-chain-permanence/)

-	[Economically	Unspendable	Bitcoin	UTXOs](https://blog.lopp.net/economically-unspendable-bitcoin-utxos/)

-	[Bitcoin	Core	SegWit	Costs	and	Risks](https://bitcoincore.org/en/2016/10/28/segwit-costs/)

-	[Bitcoin	Stamps	FAQ](https://stampchain.io/faq)

6.	Stamps	Improvement	Proposals	(SIPs)

6.1	SIP	Governance	Framework

Bitcoin	Stamps	protocol	evolves	through	community-driven	Stamps	Improvement	Proposals	(SIPs).	This	

governance	model	balances	protocol	stability	with	extensibility,	enabling	vetted	enhancements	while	

preserving	core	immutability	guarantees.

6.1.1	SIP	Lifecycle

Draft:	Proposal	submitted	as	GitHub	Issue	with	specification	outline.	Author	presents	motivation,	technical	

design,	and	backward	compatibility	analysis.

Review:	Community	discussion	period	(minimum	14	days).	Technical	reviewers	evaluate:

-	Specification	clarity	and	completeness

-	Implementation	feasibility

-	Security	implications

-	Impact	on	existing	stamps	and	indexers

-	Alignment	with	protocol	philosophy

Accepted:	Proposal	achieves	rough	consensus	among	core	developers	and	major	indexer	implementations.	

Specification	finalized	with	version	number	(SIP-XXXX).

Activated:	Implementation	deployed	with	activation	block	height	set	4+	weeks	in	future.	Advance	notice	

ensures	all	indexers,	wallets,	and	services	update	before	consensus	rule	changes	take	effect.

Final:	Activation	block	height	reached.	New	rules	enforced	by	all	compliant	indexers.	Proposal	becomes	

immutable	specification.

Superseded:	Later	SIP	replaces	or	invalidates	earlier	proposal.	Original	SIP	remains	in	historical	record	but	no	

longer	active.

6.1.2	Activation	Lead	Time

Critical	Safety	Mechanism:	All	consensus-changing	SIPs	must	specify	activation	block	height	at	least	4	weeks	

(approximately	4,032	blocks)	after	acceptance.

Rationale:

-	Indexer	operators	need	time	to	upgrade	software

-	Wallet	developers	must	integrate	new	transaction	formats

-	Service	providers	require	testing	and	deployment	cycles

-	Community	members	must	understand	changes	before	activation

Historical	Precedent:	Block	796,000	(SRC-20	Counterparty	cutoff)	and	block	865,000	(OLGA	activation)	both	

provided	multi-week	advance	notice,	ensuring	smooth	transitions	without	network	disruption.

6.1.3	Consensus	Requirements

Indexer	Consensus:	Bitcoin	Stamps	has	no	on-chain	consensus	mechanism.	Protocol	rules	are	enforced	by	

indexer	implementations.	SIP	activation	requires:

-	Reference	Indexer:	stampchain.io	(official	implementation)	must	deploy	support

-	Secondary	Indexers:	At	least	2	independent	implementations	demonstrate	compatibility

-	Community	Signaling:	No	significant	objections	from	major	stakeholders

Backward	Compatibility:	SIPs	should	maintain	compatibility	with	existing	stamps	whenever	possible.	Breaking	

changes	require	strong	justification	and	comprehensive	migration	path.

6.1.4	GitHub	Issue	Tracking

All	SIPs	are	tracked	as	GitHub	Issues	in	the	Bitcoin	Stamps	repository:

-	Repository:	https://github.com/stampchain-io/btc_stamps

-	Issue	Labels:	 SIP ,	 enhancement ,	 consensus-change
-	Discussion	Forum:	GitHub	Discussions	for	preliminary	ideas	before	formal	SIP	submission

6.2	Active	SIPs

6.2.1	SIP-0001:	SRC-20	HTLC	(Hash	Time-Locked	Contracts)

GitHub	Issue:	[#685](https://github.com/stampchain-io/btc_stamps/issues/685)

Status:	Draft	(as	of	2026-02)

Motivation:	Enable	trustless	atomic	swaps	and	escrow	services	for	SRC-20	tokens	through	hash	time-locked	

contracts.	Supports	cross-asset	exchanges	and	conditional	transfers	without	requiring	external	oracles	or	

modifying	Bitcoin	consensus.

Technical	Design:

SIP-0001	introduces	three	new	SRC-20	operations:

1.	 conditional_transfer 	—	Create	HTLC	with	hashlock	and/or	timelock:

` json

{

		"p":	"src-20",

		"op":	"conditional_transfer",

		"tick":	"KEVIN",

		"amt":	"1000",

		"to":	"bc1q...recipient",

		"hashlock":	"a4b9c8d7e6f5...sha256hash",

		"timelock":	900000

}

`
-	hashlock	(optional):	SHA-256	hash	—	recipient	must	reveal	preimage	to	claim

-	timelock	(optional):	Block	height	—	sender	can	refund	after	this	block	if	unclaimed

-	At	least	one	of	hashlock/timelock	required

-	Tokens	deducted	from	sender	immediately,	held	in	indexer	escrow	state

2.	 claim 	—	Recipient	claims	tokens	with	preimage:

` json

{

		"p":	"src-20",

		"op":	"claim",

		"tick":	"KEVIN",

		"transfer_tx":	"abc123...original_txid",

		"preimage":	"secret_value"

}

`
-	Indexer	verifies	 SHA-256(preimage) 	matches	hashlock

-	Must	be	before	timelock	block	height	(if	timelock	set)

-	Tokens	credited	to	recipient

3.	 refund 	—	Sender	reclaims	tokens	after	timelock	expires:

` json

{

		"p":	"src-20",

		"op":	"refund",

		"tick":	"KEVIN",

		"transfer_tx":	"abc123...original_txid"

}

`
-	Only	valid	after	timelock	block	height	reached

-	Tokens	returned	to	original	sender

Use	Cases:

-	Atomic	swaps:	Cross-asset	exchange	(e.g.,	KEVIN	↔	STAMP)	with	cryptographic	settlement

-	Escrow	services:	Time-locked	deposits	with	refund	guarantees

-	Trustless	bridge	deposits:	Lock	tokens	with	hashlock,	mint	on	L2	with	preimage	reveal	(see	SIP-0003)

-	Time-locked	vesting:	Gradual	token	unlock	over	time

Challenges:

-	Liveness	requirement:	Both	parties	must	be	online	during	swap	window

-	Timelock	griefing:	Malicious	actors	can	lock	counterparty	funds	then	abandon	swap

-	Multi-step	process:	Atomic	swap	requires	4	transactions	(2	conditional_transfer	+	2	claim)

-	Indexer	validation	complexity:	Requires	SHA-256	verification	and	timelock	enforcement

Activation	Timeline:	TBD	pending	community	review	and	implementation	testing.

6.2.2	SIP-0003:	Cross-Chain	Bridges

GitHub	Issue:	[#485](https://github.com/stampchain-io/btc_stamps/issues/485)

Status:	Draft	(as	of	2026-02)

Motivation:	Enable	SRC-20	token	movement	between	Bitcoin	mainnet	and	Layer	2	protocols	(Lightning	

Network,	sidechains,	rollups)	while	maintaining	UTXO-based	permanence	guarantees	for	bridged	asset	records.

Architecture:

`
Bitcoin	L1	(Stamps)		←→		Bridge	Contract		←→		L2	Protocol
					|																								|																						|

		Lock	asset										Mint	wrapped	token							Fast	transfers

		(UTXO	proof)								(bridge	attestation)					(off-chain)

`

Bridge	Operations:

1.	Lock	(L1	→	L2):
			-	User	sends	SRC-20	transfer	to	bridge	address

			-	Bridge	operators	verify	transaction	and	UTXO	proof

			-	L2	mints	equivalent	wrapped	token	to	user	address

2.	Unlock	(L2	→	L1):
			-	User	burns	wrapped	token	on	L2

			-	Bridge	operators	create	SRC-20	transfer	from	bridge	address	to	user

			-	Bitcoin	transaction	permanently	records	bridge	event

Security	Model:

-	Federated	multisig:	M-of-N	bridge	operators	hold	Bitcoin	keys

-	Fraud	proofs:	Users	can	challenge	invalid	bridge	operations

-	Timelock	withdrawals:	Delay	allows	dispute	resolution

Implementation	Requirements:

-	Bridge	indexer	module	for	cross-chain	state	verification

-	Oracle	network	for	L2	state	attestation

-	Emergency	pause	mechanism	for	security	incidents

Activation	Timeline:	Pending	security	audit	and	testnet	deployment	(target	Q3	2026).

6.2.3	SIP-0004:	Privacy	Enhancements

GitHub	Issue:	[#687](https://github.com/stampchain-io/btc_stamps/issues/687)

Status:	Draft	(as	of	2026-02)

Motivation:	Improve	SRC-20	transfer	privacy	through	cryptographic	commitments	while	maintaining	indexer	

verifiability.	Address	concern	that	account-based	model	exposes	address	balances	publicly.

Privacy	Techniques:

1.	Confidential	Amounts:

` python

Pedersen	commitments	hide	transfer	amounts

commitment	=	amount		G	+	blinding_factor		H

Indexer	verifies:	commitment_in	==	commitment_out	

(balance	preserved)

Amount	remains	hidden	from	public	queries

`

2.	Stealth	Addresses:

` python

One-time	address	per	transfer

stealth_addr	=	hash(sender_secret	+	recipient_pubkey)

Only	recipient	can	detect	and	claim	transfer

Breaks	on-chain	address	linkage

`

3.	Range	Proofs:

` python

Prove	amount	is	positive	without	revealing	value

prove(0	<	amount	<	max_supply)

Prevents	negative	balance	attacks

Maintains	confidentiality

`

Tradeoffs:

-	Proof	size:	Range	proofs	add	1-2KB	per	transfer	(higher	fees)

-	Validation	cost:	Indexers	must	verify	cryptographic	proofs	(slower	sync)

-	Regulatory	risk:	Privacy	features	may	face	jurisdictional	challenges

-	Complexity:	Wallet	implementations	require	cryptographic	libraries

Phased	Rollout:

-	Phase	1:	Optional	confidential	amounts	for	willing	users

-	Phase	2:	Stealth	address	support	in	major	wallets

-	Phase	3:	Full	privacy	by	default	with	opt-out	mechanism

Activation	Timeline:	Specification	under	development	(target	2027).

6.2.4	SIP-0005:	Binary	Transfer	Format	for	SRC-20

GitHub	Issue:	[#688](https://github.com/stampchain-io/btc_stamps/issues/688)

Status:	Draft	(as	of	2026-02)

Motivation:	Replace	JSON-encoded	SRC-20	transactions	with	compact	binary	format.	Reduce	transaction	size	

by	approximately	63%,	lowering	minting	costs	and	increasing	throughput.

Format	Specification:

`
Binary	SRC-20	Transfer	Format	(44	bytes	total):

<prefix:6><version:1><op:1><tick:20><amount:8><decimals:8>	=	44	bytes	raw

`

Field	Breakdown:

-	prefix	(6	bytes):	 stamp: 	—	indexer	detection	marker	(ASCII:	 73	74	61	6D	70	3A)

-	version	(1	byte):	 0x01 	for	format	version	1

-	op	(1	byte):	Operation	code

		-	 0x01 :	DEPLOY

		-	 0x02 :	MINT

		-	 0x03 :	TRANSFER

-	tick	(20	bytes):	UTF-8	ticker	padded	with	null	bytes

		-	Example:	"KEVIN"	→	 4B	45	56	49	4E 	+	15	null	bytes	(0x00)

-	amount	(8	bytes):	uint64	big-endian	raw	amount	(not	decimal-adjusted)

-	decimals	(8	bytes):	uint64	big-endian	decimal	precision

Detection	Logic:

` python

if	data[:6]	==	b'stamp:'	and	data[6]	==	0x01:

				#	Binary	format

				parse_binary(data)

else:

				#	JSON	format	(backward	compatible)

				parse_json(data)

`

Benefits:

-	~63%	size	reduction:	44	bytes	binary	vs	~120	bytes	JSON

-	Faster	indexer	parsing:	Binary	deserialization	vs	JSON	parsing

-	Lower	transaction	fees:	Smaller	data	size	reduces	on-chain	costs

-	Increased	data	density:	More	stamps	per	block

Migration	Strategy:

-	Binary	format	optional	after	activation

-	JSON	format	remains	valid	indefinitely	(backward	compatibility)

-	Indexers	must	support	both	formats	simultaneously

-	Wallets	can	choose	format	based	on	user	preference

Activation	Timeline:	TBD	pending	final	specification	review.

6.2.5	SIP-0006:	Native	SRC-20	AMM	(Automated	Market	Maker)

GitHub	Issue:	[#689](https://github.com/stampchain-io/btc_stamps/issues/689)

Status:	Draft	(as	of	2026-02)

Motivation:	Enable	trustless	on-chain	token	swaps	without	order	books	or	centralized	exchanges.	The	account-

based	SRC-20	model	is	ideal	for	AMM	implementation	since	balance	updates	are	atomic	indexer	operations,	

eliminating	UTXO	coordination	complexity.

Technical	Design:

SIP-0006	introduces	four	new	SRC-20	operations	for	constant	product	market	maker	(Uniswap	V2-style):

1.	 create_pool 	—	Deploy	new	liquidity	pool:

` json

{

		"p":	"src-20",

		"op":	"create_pool",

		"tick_a":	"KEVIN",

		"tick_b":	"STAMP",

		"fee_tier":	30

}

`
-	fee_tier:	Fee	in	basis	points	(10	=	0.1%,	30	=	0.3%,	100	=	1.0%)

-	Creates	LP	token	with	tick:	 LP:KEVIN/STAMP

2.	 add_liquidity 	—	Deposit	token	pair	to	pool:

` json

{

		"p":	"src-20",

		"op":	"add_liquidity",

		"pool":	"LP:KEVIN/STAMP",

		"amt_a":	"1000",

		"amt_b":	"5000"

}

`
-	Deposits	proportional	to	current	pool	ratio

-	Mints	LP	tokens	to	liquidity	provider

-	LP	tokens	are	standard	SRC-20	(transferable,	tradeable)

3.	 remove_liquidity 	—	Withdraw	from	pool:

` json

{

		"p":	"src-20",

		"op":	"remove_liquidity",

		"pool":	"LP:KEVIN/STAMP",

		"lp_amt":	"500"

}

`
-	Burns	LP	tokens

-	Returns	proportional	share	of	pool	reserves

4.	 swap 	—	Exchange	tokens:

` json

{

		"p":	"src-20",

		"op":	"swap",

		"pool":	"LP:KEVIN/STAMP",

		"from_tick":	"KEVIN",

		"amt_in":	"100"

}

`

Swap	Pricing	Formula	(Constant	Product):

`

amt_out	=	(reserve_out	×	amt_in_with_fee)	/	(reserve_in	+	amt_in_with_fee)

where:

		amt_in_with_fee	=	amt_in	×	(10000	-	fee_bps)

Example	(0.3%	fee	tier):

		amt_in_with_fee	=	100	×	(10000	-	30)	/	10000	=	99.7

`

LP	Token	Mechanics:

-	LP	tokens	are	standard	SRC-20	tokens	with	tick	format	 LP:{tick_a}/{tick_b}
-	Fully	transferable	between	addresses

-	Can	be	traded	on	secondary	markets

-	Mintable/burnable	ONLY	through	AMM	operations	(add/remove	liquidity)

-	Represent	proportional	claim	on	pool	reserves

Phased	Rollout:

-	Phase	1:	SRC-20/SRC-20	pools	(fully	trustless,	no	external	dependencies)

-	Phase	2:	wBTC	pools	(requires	SIP-0007	wrapped	asset	standard)

-	Phase	3:	Stablecoin	pools	(requires	SIP-0003	bridge	for	USDT/USDC)

Benefits:

-	Trustless:	No	intermediaries,	no	custody	risk

-	Permissionless:	Anyone	can	create	pools	or	provide	liquidity

-	Atomic	operations:	Swaps	execute	in	single	indexer	transaction

-	Capital	efficient:	Liquidity	providers	earn	fees	on	all	trades

Challenges:

-	Impermanent	loss:	Liquidity	providers	exposed	to	price	divergence

-	MEV	risk:	Indexer	ordering	can	enable	front-running	(mitigated	by	transaction	fee	priority)

-	Pool	fragmentation:	Multiple	fee	tiers	for	same	pair	splits	liquidity

Activation	Timeline:	TBD	pending	community	review	and	Phase	1	implementation.

6.2.6	SIP-0008:	Dual	Transaction	Parsing	—	Combined	SRC-20	Transfer	+	Stamp	

Issuance

GitHub	Issue:	[#692](https://github.com/stampchain-io/btc_stamps/issues/692)	(originated	from	[#554]

(https://github.com/stampchain-io/btc_stamps/issues/554))

Author:	DerpHerpenstein

Status:	Draft

Phase:	1	(Foundation)	|	Estimated	Effort:	2-3	weeks

Motivation:	Currently,	a	single	Bitcoin	transaction	can	only	perform	one	stamp	operation	—	either	issue	a	new	

stamp	OR	execute	an	SRC-20	transfer.	Users	who	want	to	do	both	must	create	two	separate	transactions,	

paying	double	the	fees.	SIP-0008	enables	a	single	transaction	to	contain	both	a	stamp	issuance	and	an	SRC-20	

transfer,	reducing	costs	and	enabling	new	composable	workflows.

Technical	Design:

The	indexer	currently	processes	each	transaction	for	a	single	stamp	operation.	SIP-0008	extends	the	transaction	

parser	to	detect	and	process	multiple	stamp	payloads	within	a	single	transaction:

`
Transaction	outputs:

		Output	0:	SRC-20	transfer	payload	(bare	multisig	or	P2WSH)

		Output	1:	Stamp	image	data	(bare	multisig	or	P2WSH)

		Output	2:	Change	output

`

Parsing	Rules:

1.	Output	scanning:	Indexer	scans	all	outputs	for	stamp-compatible	payloads

2.	Payload	classification:	Each	payload	classified	as	SRC-20	operation	or	stamp	issuance	based	on	content	type	

detection

3.	Ordered	execution:	SRC-20	transfers	processed	before	stamp	issuance	(deterministic	ordering)

4.	Atomic	processing:	Both	operations	succeed	or	both	fail	—	no	partial	execution

5.	Backward	compatibility:	Single-operation	transactions	continue	to	work	unchanged

Soft	Dependency:	SIP-0005	(Binary	Transfer	Format)	—	binary	encoding	makes	dual	payloads	more	size-

efficient,	but	SIP-0008	works	with	JSON	encoding	as	well.

Use	Cases:

-	Mint-and-transfer:	Create	a	stamp	and	immediately	send	SRC-20	tokens	in	one	transaction

-	Composable	workflows:	Agent-driven	pipelines	that	batch	stamp	operations	for	efficiency

-	Fee	optimization:	Single	transaction	fee	instead	of	two	for	combined	operations

Activation	Timeline:	TBD	pending	community	review	and	Phase	1	implementation.

6.3	Superseded	SIPs

6.3.1	SIP-0002:	SRC-20	UTXO	Binding	&	Transfer	Format	v2.0

GitHub	Issue:	[#484](https://github.com/stampchain-io/btc_stamps/issues/484)

Status:	Superseded	(by	SIP-0001)

Original	Motivation:	Bind	SRC-20	token	balances	to	specific	Bitcoin	UTXOs	to	enable	single-transaction	PSBT-

based	atomic	swaps	without	multi-step	HTLC	protocols.

Proposed	Design:

` json

{

		"p":	"src-20",

		"op":	"bind_utxo",

		"tick":	"KEVIN",

		"amt":	"1000",

		"utxo":	"txid:vout"

}

`
-	Tokens	would	be	locked	to	specific	UTXO

-	Spending	the	UTXO	would	automatically	transfer	bound	tokens

-	Enabled	single-step	atomic	swaps	via	PSBT	co-signing

Rejection	Rationale:

-	Fundamental	loss	risk:	If	user	spends	bound	UTXO	in	normal	Bitcoin	transaction,	SRC-20	tokens	could	be	lost

		-	Bitcoin	consensus	has	no	knowledge	of	SRC-20	state

		-	Wallets	cannot	prevent	accidental	UTXO	spending

		-	Loss	prevention	is	impossible	without	modifying	Bitcoin	protocol

-	Non-deterministic	rescue	operations:	Indexer	"token	recovery"	would	break	consensus	determinism

-	SIP-0001	provides	superior	solution:	HTLC	covers	all	atomic	swap	use	cases	without	loss	risk

-	Complexity	vs	benefit:	UTXO	coordination	adds	significant	implementation	burden	for	marginal	UX	

improvement

Superseded	By:	SIP-0001	(HTLC)	provides	trustless	atomic	swaps	without	binding	tokens	to	UTXOs,	eliminating	

loss	risk	while	maintaining	full	functionality.

Lessons	Learned:

-	Account-based	models	should	not	be	forcibly	bound	to	UTXO	mechanics

-	Protocol	safety	(loss	prevention)	outweighs	UX	convenience	(single-step	swaps)

-	Multi-step	protocols	(HTLC)	acceptable	when	they	eliminate	fundamental	risks

6.4	SIP	Process	Best	Practices

6.4.1	Proposal	Template

Title:	[SIP-XXXX]	Brief	descriptive	title

Author:	GitHub	username	/	contact	info

Status:	Draft

Type:	Standards	Track	/	Informational	/	Process

Created:	YYYY-MM-DD

Sections:

1.	Abstract:	One-paragraph	summary

2.	Motivation:	Problem	being	solved,	use	cases

3.	Specification:	Technical	design,	data	formats,	validation	rules

4.	Rationale:	Design	decisions,	alternatives	considered

5.	Backward	Compatibility:	Impact	on	existing	stamps/indexers

6.	Test	Cases:	Reference	implementation	tests

7.	Security	Considerations:	Attack	vectors,	mitigations

8.	Activation:	Proposed	block	height,	coordination	plan

6.4.2	Review	Criteria

Technical	Soundness:

-	Specification	is	complete	and	unambiguous

-	Implementation	is	feasible	with	existing	Bitcoin	constraints

-	No	cryptographic	or	protocol	vulnerabilities

Protocol	Alignment:

-	Preserves	UTXO-based	permanence	guarantees

-	Maintains	account-based	asset	model

-	Follows	Bitcoin-native	encoding	principles

-	Respects	community	governance	values

Ecosystem	Impact:

-	Breaking	changes	justified	and	necessary

-	Migration	path	documented	for	affected	users

-	Indexer	implementation	complexity	is	reasonable

-	Wallet/service	integration	burden	is	acceptable

Community	Support:

-	Rough	consensus	among	developers

-	No	strong	objections	from	major	stakeholders

-	Clear	demand	from	users	and	builders

6.4.3	Implementation	Requirements

Reference	Implementation:	All	accepted	SIPs	must	include:

-	Working	code	in	stampchain.io	indexer	repository

-	Comprehensive	test	suite	with	edge	cases

-	Documentation	for	indexer	operators

-	Example	transactions	on	testnet

Multi-Indexer	Compatibility:	At	least	2	independent	indexer	implementations	must	successfully	validate	SIP	

test	cases	before	activation.

Regression	Testing:	New	SIP	implementations	must	pass	full	historical	sync	test	(genesis	block	→	current	tip)	
without	breaking	existing	stamp	validation.

6.5	Open	Research	Areas

6.5.1	Zero-Knowledge	Proofs

Research	Question:	Can	zk-SNARKs	enable	private	SRC-20	transfers	with	succinct	on-chain	proofs?

Potential	Benefits:

-	Strong	privacy	(ZCash-level	confidentiality)

-	Compact	proofs	(200-500	bytes	regardless	of	transfer	complexity)

-	Trustless	verification	by	indexers

Challenges:

-	Trusted	setup	requirements	(or	STARK	alternatives)

-	Proof	generation	complexity	for	wallet	implementations

-	Validation	performance	impact	on	indexer	sync	speed

Status:	Exploratory	research;	no	formal	SIP	yet.

6.5.2	Recursive	Stamps	v2

Research	Question:	Can	stamps	reference	external	Bitcoin	data	(taproot	scripts,	DLCs)	to	enable	advanced	

smart	contracts?

Potential	Applications:

-	Stamps	triggered	by	DLC	oracle	outcomes

-	Integration	with	BitVM	computation	verification

-	Lightning	Network	settlement	to	stamp	ownership

Challenges:

-	Cross-protocol	coordination	complexity

-	Security	assumptions	for	external	data	sources

-	Indexer	validation	of	external	state

Status:	Concept	phase;	community	feedback	sought.

6.5.3	Rollup	Integration

Research	Question:	Can	Bitcoin	rollups	(BitVM,	Sovereign	SDK)	support	Stamps-compatible	assets	with	L1	

permanence	guarantees?

Potential	Architecture:

-	L2	transactions	executed	off-chain

-	Periodic	L1	commitment	(Merkle	root	stamped	on	Bitcoin)

-	L2	state	reconstructible	from	L1	commitments

Benefits:

-	High	throughput	(1000s	of	transfers	per	second)

-	Low	per-transfer	cost	(amortized	L1	fees)

-	Maintained	UTXO	permanence	for	rollup	commitments

Challenges:

-	Data	availability	(ensure	L2	state	accessible)

-	Fraud	proof	mechanisms	(dispute	resolution)

-	Indexer	complexity	(track	both	L1	and	L2	state)

Status:	Monitoring	BitVM	development;	formal	SIP	pending	rollup	maturity.

6.6	SIP	Summary	Table

|	SIP	|	Title	|	Status	|	GitHub	|	Target	Activation	|

|-----|-------|--------|--------|-------------------|

|	0001	|	SRC-20	Conditional	Transfers	(HTLC)	|	Draft	|	[#685](https://github.com/stampchain-

io/btc_stamps/issues/685)	|	TBD	|

|	0002	|	SRC-20	UTXO	Binding	&	Transfer	Format	v2.0	|	Superseded	(by	SIP-0001)	|	[#484]

(https://github.com/stampchain-io/btc_stamps/issues/484)	|	N/A	|

|	0003	|	SRC-20	Cross-Chain	Bridge	Specification	|	Draft	|	[#485](https://github.com/stampchain-

io/btc_stamps/issues/485)	|	TBD	|

|	0004	|	Shielded	SRC-20	—	Privacy	Extension	|	Draft	|	[#687](https://github.com/stampchain-

io/btc_stamps/issues/687)	|	2027+	(phased)	|

|	0005	|	Binary	Transfer	Format	for	SRC-20	|	Draft	|	[#688](https://github.com/stampchain-

io/btc_stamps/issues/688)	|	TBD	|

|	0006	|	Native	SRC-20	AMM	(Automated	Market	Maker)	|	Draft	|	[#689](https://github.com/stampchain-

io/btc_stamps/issues/689)	|	TBD	|

|	0008	|	Dual	Transaction	Parsing	|	Draft	|	[#692](https://github.com/stampchain-io/btc_stamps/issues/692)	|	

TBD	|

References:

-	[Bitcoin	Stamps	GitHub	Repository](https://github.com/stampchain-io/btc_stamps)

-	[SIP-0000:	SIP	Purpose	and	Guidelines](https://github.com/stampchain-io/btc_stamps/issues/686)

-	[Counterparty	Improvement	Proposals	(CIPs)](https://github.com/CounterpartyXCP/cips)	—	Inspiration	for	SIP	

governance	model

Next:	[Implementation	Details	→](./implementation.md)

Previous:	[←	Economic	Model](./economics.md)

7.	Implementation

7.1	Indexer	Architecture

Bitcoin	Stamps	protocol	relies	on	off-chain	indexers	to	parse	stamp	transactions,	validate	operations,	and	

maintain	asset	state.	Unlike	Bitcoin's	native	UTXO	consensus,	stamp	validity	is	determined	by	indexer	

implementations	following	deterministic	validation	rules.

7.1.1	Core	Components

`
┌───┐
│																				INDEXER	ARCHITECTURE																						│
├───┤
│																																																														│
│		┌────────────────┐									┌──────────────────┐											│
│		│		Bitcoin	Node		│────────▶│		Block	Parser				│											│
│		│		(RPC/REST)				│									│		(ZMQ	listener)		│											│
│		└────────────────┘									└────────┬─────────┘											│
│																																							│																						│
│																												┌──────────▼─────────┐											│
│																												│		Transaction							│											│
│																												│		Decoder											│											│
│																												│		(Multisig/P2WSH)	│											│
│																												└──────────┬─────────┘											│
│																																							│																						│
│																			┌───────────────────┼───────────────┐					│
│																			│																			│															│					│
│									┌─────────▼────────┐		┌──────▼──────┐		┌────▼────┐│
│									│	SRC-20	Validator	│		│	SRC-721					│		│	SRC-101	││
│									│	(Token	logic)				│		│	Validator			│		│	Validator││
│									└─────────┬────────┘		└──────┬──────┘		└────┬────┘│
│																			│																			│															│					│
│																			└───────────────────┼───────────────┘					│
│																																							│																						│
│																												┌──────────▼─────────┐											│
│																												│		State	Database				│											│
│																												│		(PostgreSQL/						│											│
│																												│			SQLite)										│											│
│																												└──────────┬─────────┘											│
│																																							│																						│
│																												┌──────────▼─────────┐											│
│																												│		API	Server								│											│
│																												│		(REST/GraphQL)				│											│
│																												└────────────────────┘											│
│																																																														│
└───┘
`

7.1.2	Block	Processing	Pipeline

1.	Block	Discovery:

` python

ZMQ	subscription	for	real-time	blocks

zmq_socket.subscribe("hashblock")

while	True:

				block_hash	=	zmq_socket.recv()

				block	=	bitcoin_rpc.getblock(block_hash,	2)		#	Verbosity	2:	full	tx	data

				process_block(block)

`

2.	Transaction	Filtering:

` python

def	is_stamp_transaction(tx):

				#	Check	for	bare	multisig	outputs

				for	vout	in	tx['vout']:

								script	=	vout['scriptPubKey']

								if	script['type']	==	'multisig':

												return	True

								#	Check	for	P2WSH	outputs	(OLGA)

								if	script['type']	==	'witness_v0_scripthash':

												return	True

				return	False

`

3.	Data	Extraction:

` python

def	extract_stamp_data(tx):

				data_chunks	=	[]

				#	Bare	multisig	extraction

				for	vout	in	tx['vout']:

								if	vout['scriptPubKey']['type']	==	'multisig':

												#	Extract	fake	pubkeys	(33	bytes	each)

												pubkeys	=	vout['scriptPubKey']['asm'].split()

												for	pk	in	pubkeys[1:-2]:		#	Skip	OP_1,	OP_N,	OP_CHECKMULTISIG

																data_chunks.append(bytes.fromhex(pk))

				#	P2WSH	witness	extraction

				for	vin	in	tx['vin']:

								if	'txinwitness'	in	vin:

												witness_script	=	vin['txinwitness'][-1]		#	Last	item	is	script

												#	Parse	witness	script	for	data	chunks

												chunks	=	parse_witness_script(witness_script)

												data_chunks.extend(chunks)

				#	Concatenate	and	decode

				raw_data	=	b''.join(data_chunks)

				return	decode_stamp_format(raw_data)

`

4.	Validation:

` python

def	validate_stamp(tx,	stamp_data,	block_height):

				#	Check	format	validity

				if	not	is_valid_json(stamp_data):

								return	False

				parsed	=	json.loads(stamp_data)

				protocol	=	parsed.get('p')

				#	Route	to	protocol-specific	validator

				if	protocol	==	'src-20':

								return	validate_src20(tx,	parsed,	block_height)

				elif	protocol	==	'src-721':

								return	validate_src721(tx,	parsed,	block_height)

				elif	protocol	==	'src-101':

								return	validate_src101(tx,	parsed,	block_height)

				return	False		#	Unknown	protocol

`

5.	State	Update:

` python

def	update_state(tx,	stamp_data,	block_height):

				parsed	=	json.loads(stamp_data)

				if	parsed['op']	==	'deploy':

								create_asset(parsed,	tx.txid,	block_height)

				elif	parsed['op']	==	'mint':

								increase_balance(

												address=tx.sender_address,

												asset=parsed['tick'],

												amount=parsed['amt']

)

				elif	parsed['op']	==	'transfer':

								transfer_balance(

												from_addr=tx.sender_address,

												to_addr=parsed['to'],

												asset=parsed['tick'],

												amount=parsed['amt']

)

`

7.1.3	State	Database	Schema

Core	Tables:

` sql

--	Asset	registry

CREATE	TABLE	assets	(

				asset_name	TEXT	PRIMARY	KEY,

				deploy_txid	TEXT	NOT	NULL,

				deploy_block	INTEGER	NOT	NULL,

				deployer_address	TEXT	NOT	NULL,

				max_supply	NUMERIC,

				divisible	BOOLEAN	DEFAULT	TRUE,

				locked	BOOLEAN	DEFAULT	FALSE,

				metadata	JSONB

);

--	Account	balances	(account-based	model)

CREATE	TABLE	balances	(

				address	TEXT	NOT	NULL,

				asset	TEXT	NOT	NULL	REFERENCES	assets(asset_name),

				amount	NUMERIC	NOT	NULL	DEFAULT	0,

				last_updated_block	INTEGER	NOT	NULL,

				PRIMARY	KEY	(address,	asset)

);

--	Transfer	history

CREATE	TABLE	transfers	(

				txid	TEXT	PRIMARY	KEY,

				block_height	INTEGER	NOT	NULL,

				timestamp	INTEGER	NOT	NULL,

				from_address	TEXT	NOT	NULL,

				to_address	TEXT	NOT	NULL,

				asset	TEXT	NOT	NULL	REFERENCES	assets(asset_name),

				amount	NUMERIC	NOT	NULL,

				status	TEXT	NOT	NULL		--	'valid',	'invalid'

);

--	Stamp	metadata

CREATE	TABLE	stamps	(

				stamp_id	SERIAL	PRIMARY	KEY,

				txid	TEXT	NOT	NULL,

				block_height	INTEGER	NOT	NULL,

				cpid	TEXT,		--	Counterparty	asset	ID	(if	legacy)

				stamp_url	TEXT,

				stamp_hash	TEXT,

				stamp_mimetype	TEXT,

				supply	INTEGER	DEFAULT	1,

				divisible	BOOLEAN	DEFAULT	FALSE,

				locked	BOOLEAN	DEFAULT	FALSE,

				creator_address	TEXT	NOT	NULL,

				encoding	TEXT	NOT	NULL		--	'multisig',	'p2wsh',	'olga'

);

--	SRC-721	compositions

CREATE	TABLE	src721_layers	(

				composition_id	TEXT	PRIMARY	KEY,

				parent_stamp_ids	INTEGER[]	NOT	NULL,

				layer_order	INTEGER[]	NOT	NULL,

				attributes	JSONB,

				rendered_hash	TEXT

);

`

7.1.4	Reorganization	Handling

Challenge:	Bitcoin	can	experience	chain	reorganizations	(reorgs)	where	blocks	are	replaced.	Indexers	must	roll	

back	state	and	replay	new	chain.

` python

def	handle_reorganization(old_tip_height,	new_tip_height,	fork_height):

				"""

				old_tip_height:	Previous	chain	tip

				new_tip_height:	New	chain	tip	after	reorg

				fork_height:	Block	where	chains	diverged

				"""

				#	Step	1:	Roll	back	state	to	fork	point

				with	db.transaction():

								#	Reverse	all	transfers	after	fork	height

								reversed_transfers	=	db.query("""

												SELECT	*	FROM	transfers

												WHERE	block_height	>	$1

												ORDER	BY	block_height	DESC

								""",	fork_height)

								for	transfer	in	reversed_transfers:

												#	Undo	transfer:	reverse	balance	changes

												balances[transfer.from_address][transfer.asset]	+=	transfer.amount

												balances[transfer.to_address][transfer.asset]	-=	transfer.amount

								#	Delete	rolled-back	data

								db.execute("DELETE	FROM	transfers	WHERE	block_height	>	$1",	fork_height)

								db.execute("DELETE	FROM	stamps	WHERE	block_height	>	$1",	fork_height)

				#	Step	2:	Replay	blocks	from	new	chain

				for	height	in	range(fork_height	+	1,	new_tip_height	+	1):

								block_hash	=	bitcoin_rpc.getblockhash(height)

								block	=	bitcoin_rpc.getblock(block_hash,	2)

								process_block(block)

				logger.info(f"Reorg	handled:	fork	at	{fork_height},	replayed	to	{new_tip_height}")

`

Detection:

` python

def	check_for_reorg(new_block):

				#	Get	current	chain	tip	from	DB

				current_tip	=	db.query("SELECT	MAX(block_height)	FROM	transfers").scalar()

				#	Get	parent	of	new	block

				new_block_parent	=	new_block['previousblockhash']

				#	Check	if	parent	matches	our	current	tip

				expected_parent	=	db.query("""

								SELECT	block_hash	FROM	blocks	WHERE	block_height	=	$1

				""",	current_tip).scalar()

				if	new_block_parent	!=	expected_parent:

								#	Reorg	detected	-	find	fork	point

								fork_height	=	find_fork_point(new_block_parent)

								handle_reorganization(current_tip,	new_block['height'],	fork_height)

`

7.2	Consensus	Model

7.2.1	Deterministic	Validation

Critical	Property:	All	indexers	processing	the	same	blockchain	must	arrive	at	identical	state.

` python

Example:	SRC-20	transfer	validation	must	be	deterministic

def	validate_src20_transfer(tx,	parsed,	block_height):

				#	Rule	1:	Sender	must	have	sufficient	balance

				sender	=	tx.sender_address

				asset	=	parsed['tick']

				amount	=	Decimal(parsed['amt'])

				if	balances[sender][asset]	<	amount:

								return	False		#	Invalid:	insufficient	balance

				#	Rule	2:	Asset	must	exist

				if	not	asset_exists(asset):

								return	False		#	Invalid:	unknown	asset

				#	Rule	3:	Asset	must	not	be	locked

				if	assets[asset].locked:

								return	False		#	Invalid:	asset	locked

				#	Rule	4:	Amount	must	respect	divisibility

				if	not	assets[asset].divisible	and	amount	!=	int(amount):

								return	False		#	Invalid:	fractional	amount	for	indivisible	asset

				#	All	rules	pass

				return	True

`

Consensus	Rules:

-	Validation	logic	must	be	order-dependent:	Process	transactions	in	block	order

-	Floating-point	arithmetic	forbidden:	Use	fixed-point	decimals	(Python	 Decimal)

-	No	external	data	sources:	Only	blockchain	data	determines	validity

-	Edge	cases	must	have	defined	behavior:	No	ambiguous	outcomes

7.2.2	First-Seen	Rule

Problem:	Multiple	transactions	in	same	block	may	conflict	(e.g.,	double-spend	attempt).

Solution:	Process	transactions	in	block	order	(first-seen	wins).

` python

def	process_block(block):

				#	Process	transactions	in	order	(tx	index	0,	1,	2,	...)

				for	tx_index,	tx	in	enumerate(block['tx']):

								if	is_stamp_transaction(tx):

												stamp_data	=	extract_stamp_data(tx)

												#	Validate	with	current	state

												if	validate_stamp(tx,	stamp_data,	block['height']):

																update_state(tx,	stamp_data,	block['height'])

																assign_stamp_number(tx.txid)		#	Only	valid	stamps	get	numbers

												else:

																log_invalid_stamp(tx.txid,	"Validation	failed")

				#	Result:	First	valid	transaction	wins;	later	conflicts	are	invalid

`

Example:

`
Block	900,000	contains:

-	Tx	A	(index	5):	Transfer	1000	KEVIN	from	Alice	to	Bob

-	Tx	B	(index	12):	Transfer	1000	KEVIN	from	Alice	to	Carol

Alice	balance:	1000	KEVIN

Processing:

1.	Tx	A	validated	(Alice	has	1000	KEVIN)	→	Alice:	0,	Bob:	1000
2.	Tx	B	validated	(Alice	has	0	KEVIN)	→	INVALID	(insufficient	balance)

Result:	Bob	receives	1000	KEVIN,	Carol	receives	nothing

`

7.2.3	Consensus	Checkpoints

Purpose:	Ensure	indexer	implementations	agree	on	historical	state.

Methodology:	Community-generated	state	hashes	at	key	block	heights.

` python

Checkpoint	format

CHECKPOINTS	=	{

				796000:	{		#	Counterparty	cutoff	block

								'state_hash':	'a3f5c9e8d7b6...',		#	Hash	of	all	balances	at	block	796000

								'total_stamps':	18516,

								'total_assets':	142

				},

				865000:	{		#	OLGA	activation	block

								'state_hash':	'e8d7b6a3f5c9...',

								'total_stamps':	45203,

								'total_assets':	387

				}

}

def	verify_checkpoint(block_height):

				if	block_height	not	in	CHECKPOINTS:

								return	True		#	No	checkpoint	at	this	height

				#	Compute	state	hash

				current_state_hash	=	compute_state_hash()

				expected_hash	=	CHECKPOINTS[block_height]['state_hash']

				if	current_state_hash	!=	expected_hash:

								raise	ConsensusError(

												f"State	mismatch	at	block	{block_height}:	"

												f"expected	{expected_hash},	got	{current_state_hash}"

)

				logger.info(f"Checkpoint	verified	at	block	{block_height}")

				return	True

def	compute_state_hash():

				#	Deterministic	hash	of	all	balances

				all_balances	=	db.query("""

								SELECT	address,	asset,	amount

								FROM	balances

								ORDER	BY	address,	asset

				""").fetchall()

				#	Serialize	to	JSON	with	sorted	keys

				state_json	=	json.dumps(all_balances,	sort_keys=True)

				return	hashlib.sha256(state_json.encode()).hexdigest()

`

7.2.4	Multi-Indexer	Consensus

Reference	Implementations:

1.	stampchain.io	(official):	Python/Rust	hybrid,	PostgreSQL	backend

2.	OpenStamps	(community):	Independent	implementation	for	validation

3.	Alternative	indexers:	Third-party	implementations	for	redundancy

Consensus	Verification:

` bash

Compare	indexer	outputs	at	block	height	900,000

curl	https://stampchain.io/api/balances/bc1q...xyz?block=900000

Response:	{"KEVIN":	"1000.0",	"STAMP":	"50.0"}

curl	https://openstamps.io/api/balances/bc1q...xyz?block=900000

Response:	{"KEVIN":	"1000.0",	"STAMP":	"50.0"}

If	outputs	differ	→	consensus	bug,	investigation	required

`

Divergence	Protocol:

1.	Community	reports	divergence	via	GitHub	Issue

2.	Indexer	operators	freeze	state	at	divergence	block

3.	Debug	sessions	compare	validation	logs	step-by-step

4.	Root	cause	identified	(usually	edge	case	in	validation	logic)

5.	Reference	implementation	patched

6.	All	indexers	update	and	re-sync	from	divergence	point

7.3	Validation	Logic

7.3.1	SRC-20	Validation

` python

def	validate_src20(tx,	parsed,	block_height):

				op	=	parsed.get('op')

				if	op	==	'deploy':

								return	validate_src20_deploy(parsed,	tx,	block_height)

				elif	op	==	'mint':

								return	validate_src20_mint(parsed,	tx,	block_height)

				elif	op	==	'transfer':

								return	validate_src20_transfer(parsed,	tx,	block_height)

				else:

								return	False		#	Unknown	operation

def	validate_src20_deploy(parsed,	tx,	block_height):

				#	Required	fields

				required	=	['p',	'op',	'tick',	'max',	'lim']

				if	not	all(field	in	parsed	for	field	in	required):

								return	False

				#	Ticker	constraints

				tick	=	parsed['tick']

				if	not	(1	<=	len(tick)	<=	5):		#	1-5	characters

								return	False

				if	not	tick.isupper():		#	Uppercase	only

								return	False

				#	Check	uniqueness

				if	asset_exists(tick):

								return	False		#	Duplicate	ticker

				#	Supply	constraints

				max_supply	=	Decimal(parsed['max'])

				mint_limit	=	Decimal(parsed['lim'])

				if	max_supply	<=	0	or	mint_limit	<=	0:

								return	False

				if	mint_limit	>	max_supply:

								return	False

				#	Counterparty	cutoff	rule

				if	block_height	>	796000:

								#	After	block	796,000,	must	use	native	Bitcoin	encoding

								if	uses_counterparty_encoding(tx):

												return	False

				return	True

def	validate_src20_mint(parsed,	tx,	block_height):

				#	Asset	must	exist

				asset	=	parsed['tick']

				if	not	asset_exists(asset):

								return	False

				#	Check	supply	constraints

				asset_info	=	get_asset(asset)

				current_supply	=	get_total_supply(asset)

				mint_amount	=	Decimal(parsed['amt'])

				#	Respect	per-mint	limit

				if	mint_amount	>	asset_info.mint_limit:

								return	False

				#	Respect	max	supply

				if	current_supply	+	mint_amount	>	asset_info.max_supply:

								return	False

				#	Asset	must	not	be	locked

				if	asset_info.locked:

								return	False

				return	True

def	validate_src20_transfer(parsed,	tx,	block_height):

				sender	=	tx.sender_address

				asset	=	parsed['tick']

				amount	=	Decimal(parsed['amt'])

				#	Asset	must	exist

				if	not	asset_exists(asset):

								return	False

				#	Sender	must	have	balance

				if	get_balance(sender,	asset)	<	amount:

								return	False

				#	Amount	must	be	positive

				if	amount	<=	0:

								return	False

				#	Respect	divisibility

				asset_info	=	get_asset(asset)

				if	not	asset_info.divisible:

								if	amount	!=	int(amount):

												return	False		#	No	fractional	amounts

				return	True

`

7.3.2	SRC-721	Validation

` python

def	validate_src721(tx,	parsed,	block_height):

				#	Required	fields

				if	'layers'	not	in	parsed	or	not	isinstance(parsed['layers'],	list):

								return	False

				#	Verify	all	referenced	stamps	exist

				for	layer_stamp_id	in	parsed['layers']:

								if	not	stamp_exists(layer_stamp_id):

												return	False		#	Invalid:	references	non-existent	stamp

				#	Layer	count	limits	(prevent	DOS	via	huge	compositions)

				if	len(parsed['layers'])	>	100:

								return	False

				#	Optional	attributes	validation

				if	'attributes'	in	parsed:

								if	not	isinstance(parsed['attributes'],	dict):

												return	False

				return	True

`

7.3.3	Encoding	Detection

` python

def	detect_encoding(tx):

				"""Determine	stamp	encoding	method"""

				#	Check	for	bare	multisig

				for	vout	in	tx['vout']:

								if	vout['scriptPubKey']['type']	==	'multisig':

												return	'bare_multisig'

				#	Check	for	P2WSH	(OLGA)

				for	vout	in	tx['vout']:

								if	vout['scriptPubKey']['type']	==	'witness_v0_scripthash':

												#	Verify	witness	script	contains	stamp	data

												if	is_olga_format(tx):

																return	'p2wsh_olga'

				#	Check	for	legacy	Counterparty	OP_RETURN

				for	vout	in	tx['vout']:

								if	vout['scriptPubKey']['type']	==	'nulldata':

												if	is_counterparty_format(tx):

																return	'counterparty_op_return'

				return	None		#	Not	a	stamp

`

7.4	Performance	Optimization

7.4.1	Rust	Parser	Integration

Bottleneck:	Python	JSON	parsing	is	slow	for	high-volume	indexing.

Solution:	Rust-based	parser	for	critical	path	(stampchain.io	implementation).

` rust

//	Rust:	Fast	binary	parsing	and	validation

use	serde_json;

pub	fn	parse_stamp_data(raw_bytes:	&[u8])	->	Result<StampData,	ParseError>	{

				//	Validate	length	prefix

				let	expected_len	=	u16::from_be_bytes([raw_bytes[0],	raw_bytes[1]]);

				let	actual_len	=	raw_bytes.len()	-	2;

				if	expected_len	as	usize	!=	actual_len	{

								return	Err(ParseError::LengthMismatch);

				}

				//	Parse	JSON	(serde_json	is	20-50x	faster	than	Python)

				let	json_data	=	&raw_bytes[2..];

				let	parsed:	StampData	=	serde_json::from_slice(json_data)?;

				Ok(parsed)

}

`

Performance	Impact:

-	Full	chain	sync	(genesis	→	block	900,000):	3	hours	(Rust)	vs	48	hours	(pure	Python)
-	Real-time	block	processing:	<100ms	per	block	(Rust)	vs	1-3	seconds	(Python)

7.4.2	Database	Indexing

` sql

--	Critical	indexes	for	query	performance

CREATE	INDEX	idx_balances_address	ON	balances(address);

CREATE	INDEX	idx_balances_asset	ON	balances(asset);

CREATE	INDEX	idx_transfers_block_height	ON	transfers(block_height);

CREATE	INDEX	idx_stamps_txid	ON	stamps(txid);

CREATE	INDEX	idx_stamps_creator	ON	stamps(creator_address);

--	Composite	indexes	for	common	queries

CREATE	INDEX	idx_transfers_asset_block	ON	transfers(asset,	block_height);

CREATE	INDEX	idx_balances_address_asset	ON	balances(address,	asset);

`

7.4.3	Caching	Strategy

` python

In-memory	cache	for	hot	data

from	functools	import	lru_cache

@lru_cache(maxsize=10000)

def	get_asset_info(asset_name):

				"""Cache	asset	metadata	(rarely	changes)"""

				return	db.query("SELECT	*	FROM	assets	WHERE	asset_name	=	$1",	asset_name)

@lru_cache(maxsize=100000)

def	stamp_exists(stamp_id):

				"""Cache	stamp	existence	checks"""

				return	db.query("SELECT	1	FROM	stamps	WHERE	stamp_id	=	$1",	stamp_id).scalar()

Invalidate	cache	on	state	updates

def	update_state(tx,	stamp_data,	block_height):

				#	...	update	database	...

				#	Clear	affected	cache	entries

				if	stamp_data['op']	==	'deploy':

								get_asset_info.cache_clear()		#	New	asset	added

`

7.5	API	Layer

7.5.1	REST	Endpoints

` python

Example	API	endpoints	(stampchain.io)

@app.get("/api/v1/balance/{address}")

def	get_balance(address:	str,	asset:	str	=	None,	block:	int	=	None):

				"""Get	address	balance(s)	at	specific	block	height"""

				if	block:

								#	Historical	balance	query

								return	query_balance_at_block(address,	asset,	block)

				else:

								#	Current	balance

								return	query_current_balance(address,	asset)

@app.get("/api/v1/asset/{tick}")

def	get_asset_info(tick:	str):

				"""Get	asset	metadata"""

				return	{

								"tick":	tick,

								"deploy_block":	assets[tick].deploy_block,

								"max_supply":	assets[tick].max_supply,

								"current_supply":	get_total_supply(tick),

								"holders":	count_holders(tick),

								"transfers":	count_transfers(tick)

				}

@app.get("/api/v1/stamp/{stamp_id}")

def	get_stamp(stamp_id:	int):

				"""Get	stamp	metadata	and	image	data"""

				stamp	=	db.query("SELECT	*	FROM	stamps	WHERE	stamp_id	=	$1",	stamp_id)

				return	{

								"stamp_id":	stamp.stamp_id,

								"txid":	stamp.txid,

								"block_height":	stamp.block_height,

								"creator":	stamp.creator_address,

								"image_url":	stamp.stamp_url,

								"encoding":	stamp.encoding

				}

`

7.5.2	WebSocket	Real-Time	Updates

` python

import	asyncio

from	websockets	import	serve

async	def	stream_new_stamps(websocket):

				"""Stream	newly	confirmed	stamps	to	connected	clients"""

				while	True:

								new_stamp	=	await	stamp_queue.get()

								await	websocket.send(json.dumps({

												"type":	"new_stamp",

												"stamp_id":	new_stamp.stamp_id,

												"txid":	new_stamp.txid,

												"block_height":	new_stamp.block_height

								}))

Client	usage:

ws	=	new	WebSocket("wss://stampchain.io/ws/stamps")

ws.onmessage	=	(event)	=>	{	console.log("New	stamp:",	

event.data)	}

`

7.6	Implementation	Summary

Architecture:	Off-chain	indexers	parse	Bitcoin	blockchain	and	maintain	asset	state	in	deterministic,	verifiable	

manner.

Consensus:	No	on-chain	enforcement—indexers	independently	validate	and	must	agree	on	state	through	

deterministic	rules.

Activation	Lead	Time:	Protocol	upgrades	(SIPs)	require	4+	weeks	notice,	specified	as	activation	block	height.

Performance:	Hybrid	Python/Rust	implementation	achieves	full	chain	sync	in	~3	hours;	real-time	processing	

<100ms	per	block.

Redundancy:	Multiple	independent	indexer	implementations	prevent	single	point	of	failure;	community	

checkpoints	ensure	consensus.

References:

-	[stampchain.io	Indexer	Source	Code](https://github.com/stampchain-io/btc_stamps)

-	[OpenStamps	Independent	Implementation](https://github.com/openstamps/indexer)

-	[Bitcoin	Core	RPC	Documentation](https://developer.bitcoin.org/reference/rpc/)

-	[ZMQ	Block	Notifications](https://github.com/bitcoin/bitcoin/blob/master/doc/zmq.md)

Next:	[Security	Analysis	→](./security.md)

Previous:	[←	SIPs](./improvement-proposals.md)

8.	Security	Analysis

8.1	Immutability	Guarantees

Bitcoin	Stamps'	security	model	is	fundamentally	derived	from	its	UTXO-based	storage	architecture.	This	section	

analyzes	the	threat	model,	attack	vectors,	and	security	properties	inherited	from	Bitcoin.

8.1.1	UTXO	Set	Permanence

Security	Property:	Once	a	stamp	transaction	is	confirmed	in	a	Bitcoin	block	with	sufficient	depth,	the	

embedded	data	is	effectively	immutable	and	unprunable.

Mechanism:

`
Stamp	Transaction	(Block	N)

				↓
Bitcoin	Miners	Confirm	(6+	confirmations)

				↓
UTXO	Created	(scriptPubKey	contains	stamp	data)

				↓
Full	Nodes	Store	UTXO	(required	for	validation)

				↓
Data	Persists	(unprunable	consensus-critical	data)

`

Proof-of-Work	Protection:

-	To	reverse	a	stamp	(via	blockchain	reorganization),	attacker	must:

		1.	Mine	competing	chain	longer	than	confirmed	depth

		2.	Accumulate	more	proof-of-work	than	honest	network

		3.	Sustain	51%	hashrate	majority	for	extended	period

Cost	Analysis	(6	confirmations	=	~1	hour):

` python

Attack	cost	to	reverse	6-block-deep	stamp	(as	of	2026)

network_hashrate	=	600_000_000	TH/s		#	~600	exahash/s

block_reward	=	3.125	BTC		#	Post-2024	halving

btc_price	=	60000		#	USD

Minimum	cost	to	mine	7	blocks	(replace	6	+	extend	by	1)

attack_cost	=	7		block_reward		btc_price

attack_cost	=	7		3.125		60000	=	$1,312,500	USD

Reality:	Requires	acquiring	51%	hashrate	hardware	(billions	

USD)

Practical	cost	>>	$1M	due	to	hardware,	electricity,	

opportunity	cost

`

Result:	Reversing	confirmed	stamps	is	economically	infeasible	for	rational	attackers.

8.1.2	UTXO	vs	Witness	Data

Critical	Distinction:	Bitcoin	Stamps	store	data	in	UTXO	set,	NOT	witness	data.

|	Property	|	UTXO	Set	Data	(Stamps)	|	Witness	Data	(Ordinals)	|

|----------|------------------------|-------------------------|

|	Required	for	validation	|	✅ 	Yes	(spending	UTXO)	|	❌	No	(signature	verification	only)	|

|	Prunable	by	nodes	|	❌	No	(breaks	validation)	|	✅ 	Yes	(after	tx	validation)	|

|	Consensus-critical	|	✅ 	Yes	|	⚠	Partial	(not	for	future	txs)	|

|	Archival	dependency	|	❌	None	(all	full	nodes)	|	⚠	Requires	archival	nodes	|

|	Long-term	permanence	|	✅ 	Guaranteed	|	⚠	Dependent	on	node	policies	|

Security	Implication:	Stamps	data	survives	even	if:

-	Archival	nodes	stop	operating

-	Witness	data	is	pruned	by	majority	of	nodes

-	Protocol	indexers	cease	operation

Threat	Scenario	Analysis:

Scenario	1:	Ordinals	data	loss

`
Year	2035:	Bitcoin	Core	default	config	prunes	witness	data	after	1	year

→	Majority	of	nodes	delete	old	Ordinals	inscription	data

→	Only	archival	nodes	retain	full	witness	history
→	If	archival	nodes	shut	down,	inscription	data	is	lost
→	Ordinals	become	unrecoverable

`

Scenario	2:	Stamps	resilience

`
Year	2035:	Same	pruning	scenario

→	Stamps	data	is	in	UTXO	set	(unprunable)

→	All	full	nodes	retain	stamp	data	(required	for	validation)

→	No	dependency	on	archival	nodes
→	Stamps	remain	permanently	accessible

`

8.1.3	UTXO	Spending	Risk

Vulnerability:	If	stamp-bearing	UTXO	is	spent,	data	remains	in	blockchain	history	but	exits	active	UTXO	set.

Mitigation:	Stamp	protocol	uses	economically	unspendable	UTXOs:

` python

Example	stamp	output

scriptPubKey:	OP_1	<fake_pubkey_1>	<fake_pubkey_2>	<real_pubkey>	OP_3	OP_CHECKMULTISIG

value:	546	satoshis		#	Dust	limit

Spending	cost	analysis

input_size	=	150	bytes		#	Approx	size	to	spend	this	UTXO

fee_rate	=	20	sat/vByte		#	Typical	fee	rate

spend_cost	=	150	*	20	=	3000	satoshis

Economic	rationality

output_value	=	546	sats

spend_cost	=	3000	sats

net_loss	=	2454	sats

Conclusion:	Economically	irrational	to	spend	(lose	money)

`

Result:	Stamp	UTXOs	are	economically	unspendable	under	normal	fee	markets,	ensuring	perpetual	UTXO	set	

residence.

Exception:	During	extremely	low	fee	periods	(<1	sat/vByte),	spending	may	become	economically	viable.	

However:

-	Most	stamp	creators	use	addresses	without	private	keys	(burn	addresses)

-	Community	norm:	Do	not	spend	stamp	UTXOs

-	Even	if	spent,	data	remains	in	blockchain	history	(recoverable	via	archival	indexing)

8.1.4	Consensus-Layer	Protection

Property:	Stamps	inherit	Bitcoin's	Proof-of-Work	security.

Attack	Resistance:

1.	51%	Attack:	Requires	sustained	majority	hashrate	control	(>$10B	hardware	investment)

2.	Sybil	Attack:	PoW	makes	creating	fake	blocks	prohibitively	expensive

3.	Eclipse	Attack:	Does	not	affect	confirmed	stamp	data	(only	network	propagation)

4.	Censorship:	Miners	can	censor	new	stamps,	but	cannot	erase	confirmed	ones

Finality:	After	~6	confirmations	(~1	hour),	stamp	data	has	same	security	as	Bitcoin	monetary	transactions.	No	

known	attack	can	reverse	deeply	confirmed	stamps	without	breaking	Bitcoin	itself.

8.2	Indexer	Security	Model

8.2.1	Trust	Assumptions

Centralization	Risk:	Unlike	Bitcoin's	native	consensus,	stamp	validity	is	determined	by	off-chain	indexers.

Trust	Model:

`
Bitcoin	Layer:	Trustless	(PoW	consensus)

				↓	(data	storage)
Stamp	Data:	Permanently	stored	(guaranteed)

				↓	(interpretation)
Indexer	Layer:	Trust-minimized	(open-source,	multi-implementation)

				↓	(presentation)
Application	Layer:	Varies	(wallet/explorer	trust)

`

Key	Insight:	Users	must	trust	indexer	validation	logic,	not	data	availability.	Data	is	guaranteed	by	Bitcoin;	only	

interpretation	requires	indexer	trust.

8.2.2	Indexer	Attack	Vectors

Attack	1:	Malicious	Indexer

Scenario:	Rogue	indexer	reports	false	balances.

` python

Honest	indexer

get_balance("bc1q...xyz",	"KEVIN")	→	1000	KEVIN

Malicious	indexer

get_balance("bc1q...xyz",	"KEVIN")	→	999999	KEVIN		#	False	balance
`

Mitigation:

1.	Multi-indexer	verification:	Users	query	multiple	independent	indexers

2.	Open-source	validation:	Anyone	can	verify	balances	by	running	own	indexer

3.	Consensus	checkpoints:	Community-verified	state	hashes	at	key	blocks

4.	Reputation	systems:	Wallets	prioritize	trusted	indexers	(stampchain.io,	OpenStamps)

Result:	Attack	detected	when	balances	diverge	across	indexers.	Malicious	indexer	loses	reputation;	honest	

indexers	remain	authoritative.

Attack	2:	State	Divergence	Bug

Scenario:	Bug	in	indexer	code	causes	state	divergence	across	implementations.

` python

Indexer	A	(buggy	edge	case	handling)

process_transfer(amount="1000.00000001")		#	Accepts	fractional	indivisible	token

→	balance_A["KEVIN"]	=	1000.00000001

Indexer	B	(correct	validation)

process_transfer(amount="1000.00000001")		#	Rejects	invalid	transfer

→	balance_B["KEVIN"]	=	1000

`

Detection:

` bash

Community	monitoring

curl	https://stampchain.io/api/balance/bc1q...xyz	→	{"KEVIN":	"1000.00000001"}
curl	https://openstamps.io/api/balance/bc1q...xyz	→	{"KEVIN":	"1000"}

Divergence	alert	triggered

`

Mitigation:

1.	Consensus	checkpoints:	Pre-computed	state	hashes	at	milestone	blocks

2.	Test	suites:	Comprehensive	edge	case	testing

3.	Multi-language	implementations:	Python,	Rust,	Go	reduce	likelihood	of	identical	bugs

4.	Bug	bounty	programs:	Incentivize	discovery	and	reporting

Resolution:

1.	Freeze	indexer	state	at	divergence	block

2.	Debug	session:	Compare	validation	logs	transaction-by-transaction

3.	Identify	root	cause	(usually	edge	case	in	validation	logic)

4.	Patch	reference	implementation

5.	All	indexers	re-sync	from	divergence	point

6.	Community	consensus	on	canonical	state

Attack	3:	Eclipse	Attack	on	Indexer

Scenario:	Attacker	isolates	indexer's	Bitcoin	node,	feeds	fake	blocks.

`
Attacker	→	Fake	Bitcoin	blocks	→	Isolated	indexer	node	→	False	stamp	state

`

Mitigation:

1.	Multiple	Bitcoin	node	connections:	Indexer	connects	to	diverse	nodes

2.	Checkpoint	validation:	Verify	block	hashes	match	known	checkpoints

3.	Network	diversity:	Connect	to	nodes	across	different	ISPs,	geolocations

4.	Block	header	verification:	Validate	cumulative	PoW	matches	expected	difficulty

Result:	Isolated	indexer	detects	anomaly	(PoW	mismatch,	checkpoint	failure)	and	alerts	operator.

8.2.3	Data	Availability

Property:	Stamp	data	is	available	as	long	as	Bitcoin	network	operates.

Availability	Guarantees:

1.	Full	Nodes:	~50,000	Bitcoin	full	nodes	globally	store	UTXO	set

2.	Geographic	Distribution:	Nodes	across	100+	countries

3.	Independent	Operators:	Diverse	node	operators	(mining	pools,	exchanges,	enthusiasts)

4.	Redundancy:	Single	node	failure	has	no	impact	(1000s	of	backups)

Failure	Scenario	Analysis:

Scenario:	All	indexers	shut	down

`
→	Stamp	data	remains	in	Bitcoin	UTXO	set	(unchanged)

→	Any	party	can	launch	new	indexer,	sync	from	genesis

→	Asset	balances	reconstructible	from	blockchain

→	Protocol	continues	functioning	(trustless	recovery)
`

Scenario:	Catastrophic	Bitcoin	network	failure

`
→	If	Bitcoin	dies,	stamps	die	with	it	(accepted	risk)

→	No	protocol	can	survive	underlying	blockchain	failure
→	Stamps	permanence	=	Bitcoin	permanence	(aligned	incentives)

`

8.3	Protocol-Specific	Vulnerabilities

8.3.1	Front-Running	Attacks

Vulnerability:	Attacker	observes	pending	stamp	transaction	(mempool),	submits	higher-fee	competing	

transaction.

Example:

`
Alice	broadcasts:	MINT	1000	KEVIN	(fee:	10	sat/vByte)

				↓	(mempool)

Bob	observes	transaction,	broadcasts:	MINT	1000	KEVIN	(fee:	50	sat/vByte)

				↓	(next	block)
Bob's	transaction	confirms	first	→	Bob	receives	KEVIN
Alice's	transaction	confirms	second	→	Alice	receives	nothing	(max	supply	reached)

`

Mitigation:

1.	Privacy:	Use	private	transaction	relay	(direct	miner	submission)

2.	High	fees:	Pay	competitive	fee	rate	to	discourage	front-running

3.	MEV-resistance:	SRC-20	minting	is	first-come-first-served	(no	extractable	value	in	ordering)

4.	Batch	minting:	Deploy	+	mint	in	same	transaction	(atomic	operation)

Limitation:	Front-running	is	inherent	to	public	mempool.	Complete	mitigation	requires	private	mempools	

(availability/centralization	tradeoff).

8.3.2	Replay	Attacks

Vulnerability:	Reuse	of	stamp	transaction	on	chain	forks	(e.g.,	contentious	hard	fork).

Scenario:

`
Bitcoin	forks	into	Chain	A	and	Chain	B

Alice's	stamp	transaction	valid	on	both	chains

→	Stamp	created	on	Chain	A

→	Same	stamp	replayed	on	Chain	B	(unintended	duplication)

`

Mitigation:

1.	Chain-specific	indexers:	Community	designates	canonical	chain	(longest	PoW)

2.	Replay	protection:	Future	SIPs	may	include	chain	ID	in	transactions

3.	Economic	disincentive:	Forked	chains	typically	have	low	value	(no	incentive	to	replay)

Historical	Example:	Bitcoin	Cash	(2017)	and	Bitcoin	SV	(2018)	forks	had	separate	Counterparty	ecosystems.	No	

significant	stamp	replay	issues	due	to	community	consensus	on	Bitcoin	mainnet.

8.3.3	Ticker	Squatting

Vulnerability:	Malicious	actor	deploys	popular	ticker	before	legitimate	project.

Example:

`
Attacker	deploys	"STAMP"	token	(malicious)

				↓	(1	month	later)

Legitimate	STAMP	project	launches

				↓	(ticker	already	taken)
Legitimate	project	must	use	alternative	ticker	("STAMP2",	"STMP")

`

Mitigation:

1.	First-come-first-served:	Protocol	design	accepts	ticker	squatting	as	valid

2.	Community	curation:	Indexers/wallets	flag	known	malicious	tickers

3.	Metadata	verification:	Users	verify	deploy	block,	deployer	address

4.	Naming	services:	SRC-101	enables	human-readable	names	(alternative	to	tickers)

5.	Social	consensus:	Community	recognizes	legitimate	projects	regardless	of	ticker

Accepted	Risk:	Bitcoin	Stamps	follows	permissionless	ethos—anyone	can	deploy	any	ticker.	Scam	prevention	is	

social/application	layer	responsibility,	not	protocol	enforcement.

8.3.4	Dust	Attack

Vulnerability:	Attacker	sends	tiny	stamp	token	amounts	to	many	addresses,	tracking	UTXO	linkage.

Example:

`
Attacker	sends	0.00000001	KEVIN	to	10,000	addresses

				↓

Tracks	which	addresses	consolidate	UTXOs	(reveals	address	clustering)

				↓
Deanonymizes	user	identity	via	address	linkage

`

Mitigation:

1.	Ignore	dust:	Wallets	can	hide	balances	below	threshold

2.	Coin	control:	Users	avoid	consolidating	dust	with	main	balance

3.	Privacy	protocols:	SIP-0004	(confidential	transfers)	breaks	linkage

4.	CoinJoin	integration:	Mix	UTXOs	before	consolidation

Limitation:	Account-based	model	means	dust	tokens	don't	create	on-chain	linkage	(no	UTXOs	to	track).	Dust	

attack	less	effective	against	stamps	than	UTXO-based	tokens.

8.4	Attack	Cost	Analysis

8.4.1	Stamp	Reversal	Attack

Goal:	Delete	or	modify	confirmed	stamp	data.

Required	Attack:	51%	attack	on	Bitcoin	network.

Cost	(as	of	2026):

` python

Current	Bitcoin	hashrate

total_hashrate	=	600_000_000	TH/s		#	600	exahash/s

To	achieve	51%	majority

required_hashrate	=	600_000_000	*	0.51	/	0.49	=	624_489_796	TH/s

Hardware	cost	(Antminer	S19	XP:	140	TH/s,	$5000	each)

miners_needed	=	624_489_796	/	140	=	4,460,641	miners

hardware_cost	=	4,460,641	*	5000	=	$22,303,205,000	(~$22	billion	USD)

Operational	cost	(electricity:	$0.05/kWh,	3.25	kW	per	miner)

daily_power_cost	=	4,460,641		3.25		24	*	0.05	=	$17,344,000/day

Attack	duration	to	reverse	6-deep	stamp

attack_duration	=	1	hour	(mine	7	blocks)

attack_cost	=	$22.3B	(hardware)	+	$720k	(electricity)	≈	$22.3	billion

Opportunity	cost	(forgoing	legitimate	mining	revenue)

blocks_mined	=	7

revenue_lost	=	7		3.125	BTC		$60,000	=	$1,312,500

`

Total	Attack	Cost:	~$22	billion	USD	(hardware)	+	ongoing	electricity	+	lost	revenue.

Conclusion:	Economically	irrational	for	all	but	nation-state	attackers.	Stamp	data	is	secured	by	Bitcoin's	

cumulative	PoW.

8.4.2	Indexer	Manipulation	Attack

Goal:	Trick	users	into	accepting	false	stamp	balances.

Attack	Vector:	Operate	malicious	indexer	reporting	inflated	balances.

Cost:	~$10,000	(server	costs)	+	development	time.

Mitigation	Cost:	$0	(users	query	multiple	indexers	for	free).

Success	Probability:	Near	zero	(users	detect	divergence	across	indexers).

Conclusion:	Low-cost	attack	with	negligible	success	probability.	Not	economically	viable.

8.4.3	Ticker	Squatting	Attack

Goal:	Profit	from	squatting	popular	tickers	before	legitimate	projects.

Cost:	~$50-$500	per	ticker	(deploy	transaction	fee).

Potential	Profit:	Speculative	(reselling	ticker	to	project,	or	scam	exit).

Mitigation:	Community	curation,	wallet	warnings,	metadata	verification.

Conclusion:	Low-cost	nuisance	attack.	Profitable	only	if	users	fail	to	verify	legitimacy.	Social	layer	mitigation	

effective.

8.5	Threat	Model	Summary

8.5.1	Security	Hierarchy

Layer	1:	Bitcoin	Consensus	(Trustless)

-	✅ 	Stamp	data	permanence	guaranteed	by	PoW

-	✅ 	Reversal	requires	>$20B	attack	(infeasible)

-	✅ 	Data	availability	as	long	as	Bitcoin	operates

Layer	2:	Indexer	Validation	(Trust-Minimized)

-	⚠	Requires	trust	in	indexer	validation	logic

-	✅ 	Mitigated	by	multi-indexer	consensus

-	✅ 	Open-source,	verifiable	by	anyone

-	⚠	State	divergence	bugs	possible	(rare,	detectable,	bxable)

Layer	3:	Application	Layer	(Trust-Dependent)

-	⚠	Wallets/explorers	may	report	false	data

-	⚠	Users	must	verify	application	integrity

-	✅ 	Mitigated	by	using	reputable	services

8.5.2	Risk	Matrix

|	Threat	|	Likelihood	|	Impact	|	Mitigation	|	Residual	Risk	|

|--------|-----------|--------|------------|---------------|

|	51%	attack	|	Very	Low	|	Critical	|	Bitcoin	PoW	|	Negligible	|

|	UTXO	pruning	|	None	|	N/A	|	Consensus-critical	storage	|	None	|

|	Indexer	bug	|	Low	|	Medium	|	Multi-indexer	consensus	|	Low	|

|	Malicious	indexer	|	Medium	|	Low	|	User	verification	|	Very	Low	|

|	Front-running	|	Medium	|	Low	|	Privacy	tools	|	Medium	|

|	Ticker	squatting	|	High	|	Low	|	Social	consensus	|	Low	|

|	Replay	attack	|	Very	Low	|	Low	|	Chain	consensus	|	Very	Low	|

8.5.3	Security	Recommendations

For	Users:

1.	Verify	balances	across	multiple	indexers	(stampchain.io,	OpenStamps)

2.	Use	reputable	wallets	with	established	track	record

3.	Check	deploy	metadata	(block	height,	deployer	address)	before	transacting

4.	Run	own	indexer	for	maximum	trustlessness	(advanced	users)

For	Developers:

1.	Implement	multi-indexer	queries	in	applications

2.	Display	divergence	warnings	if	indexers	disagree

3.	Validate	consensus	checkpoints	during	indexer	sync

4.	Contribute	to	test	suites	for	edge	case	coverage

For	Indexer	Operators:

1.	Connect	to	diverse	Bitcoin	nodes	(prevent	eclipse	attacks)

2.	Verify	consensus	checkpoints	at	milestone	blocks

3.	Publish	state	hashes	for	community	verification

4.	Run	comprehensive	test	suites	before	deploying	updates

8.6	Comparison	with	Other	Protocols

8.6.1	Bitcoin	Stamps	vs	Ordinals

|	Security	Property	|	Bitcoin	Stamps	|	Ordinals	(Inscriptions)	|

|------------------|----------------|-------------------------|

|	Data	permanence	|	✅ 	Guaranteed	(UTXO	set)	|	⚠	Dependent	(witness	pruning)	|

|	Consensus	enforcement	|	❌	Indexer-based	|	❌	Indexer-based	|

|	Pruning	risk	|	✅ 	None	|	⚠	Possible	(witness	data)	|

|	51%	attack	protection	|	✅ 	Full	Bitcoin	PoW	|	✅ 	Full	Bitcoin	PoW	|

|	Archival	dependency	|	✅ 	None	(full	nodes	succient)	|	⚠	Requires	archival	nodes	|

|	Long-term	guarantee	|	✅ 	As	long	as	Bitcoin	exists	|	⚠	Depends	on	node	policies	|

8.6.2	Bitcoin	Stamps	vs	Counterparty

|	Security	Property	|	Bitcoin	Stamps	|	Counterparty	|

|------------------|----------------|--------------|

|	Data	storage	|	✅ 	UTXO	set	(multisig/P2WSH)	|	⚠	OP_RETURN	(80	bytes,	prunable)	|

|	Asset	model	|	✅ 	Account-based	(inherited)	|	✅ 	Account-based	|

|	Protocol	maturity	|	⚠	Young	(est.	2023)	|	✅ 	Mature	(est.	2014)	|

|	Indexer	diversity	|	⚠	Limited	implementations	|	✅ 	Multiple	implementations	|

|	Permanence	guarantee	|	✅ 	UTXO-based	|	⚠	OP_RETURN	(smaller,	prunable)	|

Key	Difference:	Counterparty	uses	80-byte	OP_RETURN	outputs	(provably	unspendable,	smaller	data).	Bitcoin	

Stamps	use	multisig/P2WSH	for	larger	data	and	stronger	permanence	guarantees.

8.7	Future	Security	Considerations

8.7.1	Quantum	Computing	Threat

Threat:	Quantum	computers	(Shor's	algorithm)	can	break	ECDSA	signatures,	potentially	allowing	theft	of	funds	

from	known	public	keys.

Impact	on	Stamps:

-	Stamp	data	permanence	unaffected	(data	is	public,	not	secret)

-	UTXO	spending	risk	if	quantum	attacker	derives	private	keys

-	Indexer	validation	logic	unaffected	(no	cryptographic	secrets)

Mitigation:

-	Use	burn	addresses	(no	private	key	exists	→	quantum-proof)

-	Future	stamps	may	use	quantum-resistant	signatures	(post-quantum	cryptography)

-	Bitcoin-level	mitigation	(soft	fork	to	quantum-resistant	signatures)	protects	all	stamps

8.7.2	Bitcoin	Protocol	Changes

Threat:	Future	Bitcoin	soft/hard	forks	may	affect	stamp	permanence	guarantees.

Potential	Risks:

-	UTXO	set	pruning	mechanisms	(BIP	proposal:	stateless	validation)

-	Changes	to	multisig	or	P2WSH	validation	rules

-	Block	size	reductions	affecting	stamp	relay

Mitigation:

-	Community	monitoring	of	Bitcoin	Core	development

-	Participation	in	BIP	discussions	affecting	data	storage

-	Fork	contingency	plans	(maintain	support	for	longest	PoW	chain)

8.7.3	Regulatory	Challenges

Threat:	Jurisdictions	may	ban	stamp	creation	or	indexing.

Impact:

-	Stamp	data	remains	on-chain	(cannot	be	removed	by	regulation)

-	Indexers	may	shut	down	in	restricted	jurisdictions

-	Wallets	may	delist	stamp	functionality

Mitigation:

-	Geographic	indexer	distribution	(censorship-resistant)

-	Open-source	code	enables	permissionless	operation

-	Tor/VPN	access	to	indexers	in	permissive	jurisdictions

-	Decentralized	indexer	networks	(future	research)

References:

-	[Bitcoin	Security	Model](https://en.bitcoin.it/wiki/Weaknesses)

-	[51%	Attack	Cost	Analysis](https://www.crypto51.app/)

-	[UTXO	Set	Research](https://research.mempool.space/utxo-set-report/)

-	[Counterparty	Security	Model](https://counterparty.io/docs/protocol_specification/)

-	[Ordinals	vs	Stamps	Permanence	Debate](https://bitcoinmagazine.com/technical/bitcoin-stamps-vs-ordinals-

permanence)

Next:	[Future	Directions	→](./future.md)

Previous:	[←	Implementation](./implementation.md)

9.	Future	Work

Bitcoin	Stamps	protocol	evolution	is	governed	by	the	Stamps	Improvement	Proposal	(SIP)	process,	ensuring	

community-driven,	backward-compatible	development.	This	section	summarizes	active	research	areas;	detailed	

specifications	live	in	individual	SIPs.

9.1	Active	SIP	Proposals

|	SIP	|	Title	|	Status	|	Impact	|

|-----|-------|--------|--------|

|	SIP-0001	|	Conditional	Transfers	/	HTLC	|	Draft	|	Escrows,	atomic	swaps,	time-locks	|

|	SIP-0003	|	Cross-Chain	Bridges	|	Research	|	Layer	2	interoperability	|

|	SIP-0004	|	Privacy	Enhancements	|	Research	|	Confidential	amounts,	stealth	addresses	|

|	SIP-0005	|	Binary	Transfer	Format	|	Draft	|	40-60%	transfer	cost	reduction	|

|	SIP-0006	|	Native	SRC-20	AMM	|	Research	|	On-chain	liquidity	pools	|

|	SIP-0007	|	Wrapped	Asset	Standard	|	Research	|	Cross-chain	asset	representation	|

|	SIP-0008	|	Dual	Transaction	Parsing	|	Draft	|	Combined	stamp	+	SRC-20	operations	|

For	full	SIP	specifications,	see	the	[SIP	registry	on	GitHub](https://github.com/stampchain-io/btc_stamps/issues?

q=label%3ASIP).

9.2	Research	Directions

DeFi	Primitives

Conditional	transfers	(SIP-0001)	introduce	programmable	conditions	to	SRC-20	operations	—	time-locks,	

oracle	attestations,	multi-signature	thresholds,	and	atomic	swaps.	These	enable	escrow	services,	decentralized	

exchange,	vesting	schedules,	and	crowdfunding,	all	while	preserving	the	account-based	balance	model.

Key	constraint:	SRC-20	is	account-based,	not	UTXO-based.	DeFi	primitives	must	work	through	indexer-tracked	

locked	balances	and	condition	evaluation,	not	by	locking	tokens	in	specific	UTXOs.

Privacy

Phased	approach	(SIP-0004):

1.	Confidential	amounts	—	Pedersen	commitments	hide	transfer	amounts	while	indexers	verify	balance	

preservation

2.	Stealth	addresses	—	One-time	addresses	prevent	address	linkage

3.	Zero-knowledge	proofs	—	Exploratory	research	for	full	sender/recipient/amount	privacy

Privacy	features	are	opt-in;	transparent	transfers	remain	available	for	compliance	and	auditability.

Cross-Chain	Bridges

SIP-0003	proposes	federated	multisig	bridges	to	Layer	2	protocols	(Lightning	Network,	Liquid,	Stacks).	Bridge	

lock/unlock	records	live	permanently	on	Layer	1	while	wrapped	tokens	circulate	on	L2	for	faster,	cheaper	

transfers.	Research	into	BitVM-based	trustless	bridges	continues.

Protocol	Optimizations

Binary	transfer	format	(SIP-0005)	eliminates	JSON	overhead	for	SRC-20	transfers,	reducing	transaction	size	by	

40-60%.	Dual	transaction	parsing	(SIP-0008)	enables	single	transactions	to	perform	both	stamp	creation	and	

SRC-20	operations.

9.3	Design	Principles

All	protocol	extensions	must	satisfy:

1.	Preserve	UTXO	permanence	—	Consensus-critical	data	storage	in	Bitcoin	UTXO	set

2.	Account-based	compatibility	—	Work	with	existing	balance	model,	no	forced	UTXO-token	migration

3.	Indexer	feasibility	—	Implementable	by	community	indexers	without	excessive	computational	burden

4.	Activation	lead	time	—	Consensus	changes	require	4+	weeks	advance	notice	at	specified	block	height

5.	Graceful	degradation	—	Legacy	indexers	continue	functioning	for	existing	stamps

9.4	Long-Term	Vision

Bitcoin	Stamps	positions	Bitcoin	as	the	canonical	permanent	data	storage	layer.	Future	Bitcoin	upgrades	—	

OP_CAT	covenants,	drivechains	(BIP	300/301),	BitVM	—	may	reduce	indexer	trust	assumptions	by	enabling	on-

chain	validation	of	stamp	rules.	Stamps	will	inherit	quantum	resistance	from	any	future	Bitcoin	cryptographic	

upgrades.

The	protocol's	future	is	shaped	by	community	contributions	through	the	SIP	process.	All	are	invited	to	

participate.

Get	Involved:

-	GitHub:	https://github.com/stampchain-io/btc_stamps	(contribute	code,	submit	SIPs)

-	Telegram:	https://t.me/BitcoinStamps	(community	hub)

-	Discord:	https://discord.gg/stampchain	(community	discussions)

-	Twitter:	@stampchain	(protocol	updates)

-	Developer	Docs:	https://docs.stampchain.io	(API	references,	tutorials)

Previous:	[←	Security	Analysis](./security.md)

Table	of	Contents:	[↑	Whitepaper	Index](./index.md)

